5 resultados para amplitude ratios
em CaltechTHESIS
Resumo:
Abstract to Part I
The inverse problem of seismic wave attenuation is solved by an iterative back-projection method. The seismic wave quality factor, Q, can be estimated approximately by inverting the S-to-P amplitude ratios. Effects of various uncertain ties in the method are tested and the attenuation tomography is shown to be useful in solving for the spatial variations in attenuation structure and in estimating the effective seismic quality factor of attenuating anomalies.
Back-projection attenuation tomography is applied to two cases in southern California: Imperial Valley and the Coso-Indian Wells region. In the Coso-Indian Wells region, a highly attenuating body (S-wave quality factor (Q_β ≈ 30) coincides with a slow P-wave anomaly mapped by Walck and Clayton (1987). This coincidence suggests the presence of a magmatic or hydrothermal body 3 to 5 km deep in the Indian Wells region. In the Imperial Valley, slow P-wave travel-time anomalies and highly attenuating S-wave anomalies were found in the Brawley seismic zone at a depth of 8 to 12 km. The effective S-wave quality factor is very low (Q_β ≈ 20) and the P-wave velocity is 10% slower than the surrounding areas. These results suggest either magmatic or hydrothermal intrusions, or fractures at depth, possibly related to active shear in the Brawley seismic zone.
No-block inversion is a generalized tomographic method utilizing the continuous form of an inverse problem. The inverse problem of attenuation can be posed in a continuous form , and the no-block inversion technique is applied to the same data set used in the back-projection tomography. A relatively small data set with little redundancy enables us to apply both techniques to a similar degree of resolution. The results obtained by the two methods are very similar. By applying the two methods to the same data set, formal errors and resolution can be directly computed for the final model, and the objectivity of the final result can be enhanced.
Both methods of attenuation tomography are applied to a data set of local earthquakes in Kilauea, Hawaii, to solve for the attenuation structure under Kilauea and the East Rift Zone. The shallow Kilauea magma chamber, East Rift Zone and the Mauna Loa magma chamber are delineated as attenuating anomalies. Detailed inversion reveals shallow secondary magma reservoirs at Mauna Ulu and Puu Oo, the present sites of volcanic eruptions. The Hilina Fault zone is highly attenuating, dominating the attenuating anomalies at shallow depths. The magma conduit system along the summit and the East Rift Zone of Kilauea shows up as a continuous supply channel extending down to a depth of approximately 6 km. The Southwest Rift Zone, on the other hand, is not delineated by attenuating anomalies, except at a depth of 8-12 km, where an attenuating anomaly is imaged west of Puu Kou. The Ylauna Loa chamber is seated at a deeper level (about 6-10 km) than the Kilauea magma chamber. Resolution in the Mauna Loa area is not as good as in the Kilauea area, and there is a trade-off between the depth extent of the magma chamber imaged under Mauna Loa and the error that is due to poor ray coverage. Kilauea magma chamber, on the other hand, is well resolved, according to a resolution test done at the location of the magma chamber.
Abstract to Part II
Long period seismograms recorded at Pasadena of earthquakes occurring along a profile to Imperial Valley are studied in terms of source phenomena (e.g., source mechanisms and depths) versus path effects. Some of the events have known source parameters, determined by teleseismic or near-field studies, and are used as master events in a forward modeling exercise to derive the Green's functions (SH displacements at Pasadena that are due to a pure strike-slip or dip-slip mechanism) that describe the propagation effects along the profile. Both timing and waveforms of records are matched by synthetics calculated from 2-dimensional velocity models. The best 2-dimensional section begins at Imperial Valley with a thin crust containing the basin structure and thickens towards Pasadena. The detailed nature of the transition zone at the base of the crust controls the early arriving shorter periods (strong motions), while the edge of the basin controls the scattered longer period surface waves. From the waveform characteristics alone, shallow events in the basin are easily distinguished from deep events, and the amount of strike-slip versus dip-slip motion is also easily determined. Those events rupturing the sediments, such as the 1979 Imperial Valley earthquake, can be recognized easily by a late-arriving scattered Love wave that has been delayed by the very slow path across the shallow valley structure.
Resumo:
This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.
Resumo:
The problem of the finite-amplitude folding of an isolated, linearly viscous layer under compression and imbedded in a medium of lower viscosity is treated theoretically by using a variational method to derive finite difference equations which are solved on a digital computer. The problem depends on a single physical parameter, the ratio of the fold wavelength, L, to the "dominant wavelength" of the infinitesimal-amplitude treatment, L_d. Therefore, the natural range of physical parameters is covered by the computation of three folds, with L/L_d = 0, 1, and 4.6, up to a maximum dip of 90°.
Significant differences in fold shape are found among the three folds; folds with higher L/L_d have sharper crests. Folds with L/L_d = 0 and L/L_d = 1 become fan folds at high amplitude. A description of the shape in terms of a harmonic analysis of inclination as a function of arc length shows this systematic variation with L/L_d and is relatively insensitive to the initial shape of the layer. This method of shape description is proposed as a convenient way of measuring the shape of natural folds.
The infinitesimal-amplitude treatment does not predict fold-shape development satisfactorily beyond a limb-dip of 5°. A proposed extension of the treatment continues the wavelength-selection mechanism of the infinitesimal treatment up to a limb-dip of 15°; after this stage the wavelength-selection mechanism no longer operates and fold shape is mainly determined by L/L_d and limb-dip.
Strain-rates and finite strains in the medium are calculated f or all stages of the L/L_d = 1 and L/L_d = 4.6 folds. At limb-dips greater than 45° the planes of maximum flattening and maximum flattening rat e show the characteristic orientation and fanning of axial-plane cleavage.
Resumo:
The σD values of nitrated cellulose from a variety of trees covering a wide geographic range have been measured. These measurements have been used to ascertain which factors are likely to cause σD variations in cellulose C-H hydrogen.
It is found that a primary source of tree σD variation is the σD variation of the environmental precipitation. Superimposed on this are isotopic variations caused by the transpiration of the leaf water incorporated by the tree. The magnitude of this transpiration effect appears to be related to relative humidity.
Within a single tree, it is found that the hydrogen isotope variations which occur for a ring sequence in one radial direction may not be exactly the same as those which occur in a different direction. Such heterogeneities appear most likely to occur in trees with asymmetric ring patterns that contain reaction wood. In the absence of reaction wood such heterogeneities do not seem to occur. Thus, hydrogen isotope analyses of tree ring sequences should be performed on trees which do not contain reaction wood.
Comparisons of tree σD variations with variations in local climate are performed on two levels: spatial and temporal. It is found that the σD values of 20 North American trees from a wide geographic range are reasonably well-correlated with the corresponding average annual temperature. The correlation is similar to that observed for a comparison of the σD values of annual precipitation of 11 North American sites with annual temperature. However, it appears that this correlation is significantly disrupted by trees which grew on poorly drained sites such as those in stagnant marshes. Therefore, site selection may be important in choosing trees for climatic interpretation of σD values, although proper sites do not seem to be uncommon.
The measurement of σD values in 5-year samples from the tree ring sequences of 13 trees from 11 North American sites reveals a variety of relationships with local climate. As it was for the spatial σD vs climate comparison, site selection is also apparently important for temporal tree σD vs climate comparisons. Again, it seems that poorly-drained sites are to be avoided. For nine trees from different "well-behaved" sites, it was found that the local climatic variable best related to the σD variations was not the same for all sites.
Two of these trees showed a strong negative correlation with the amount of local summer precipitation. Consideration of factors likely to influence the isotopic composition of summer rain suggests that rainfall intensity may be important. The higher the intensity, the lower the σD value. Such an effect might explain the negative correlation of σD vs summer precipitation amount for these two trees. A third tree also exhibited a strong correlation with summer climate, but in this instance it was a positive correlation of σD with summer temperature.
The remaining six trees exhibited the best correlation between σD values and local annual climate. However, in none of these six cases was it annual temperature that was the most important variable. In fact annual temperature commonly showed no relationship at all with tree σD values. Instead, it was found that a simple mass balance model incorporating two basic assumptions yielded parameters which produced the best relationships with tree σD values. First, it was assumed that the σD values of these six trees reflected the σD values of annual precipitation incorporated by these trees. Second, it was assumed that the σD value of the annual precipitation was a weighted average of two seasonal isotopic components: summer and winter. Mass balance equations derived from these assumptions yielded combinations of variables that commonly showed a relationship with tree σD values where none had previously been discerned.
It was found for these "well-behaved" trees that not all sample intervals in a σD vs local climate plot fell along a well-defined trend. These departures from the local σD VS climate norm were defined as "anomalous". Some of these anomalous intervals were common to trees from different locales. When such widespread commonalty of an anomalous interval occurred, it was observed that the interval corresponded to an interval in which drought had existed in the North American Great Plains.
Consequently, there appears to be a combination of both local and large scale climatic information in the σD variations of tree cellulose C-H hydrogen.
Resumo:
The O18/O16 ratios of coexisting minerals from a number of regionally metamorphosed rocks have been measured, using a bromine pentafluoride extraction-technique. Listed in order of their increasing tendency to concentrate O18, the minerals analyzed are magnetite, ilmenite, chlorite, biotite, garnet, hornblende, kyanite, muscovite, feldspar, and quartz. The only anomalous sequence detected occurs in a xenolith of schist, in which quartz, muscovite, biotite, and ilmenite, but not garnet, have undergone isotopic exchange with surrounding trondjemite.
With few exceptions, quartz-magnetite and quartz-ilmenite fractionations decrease with increasing metamorphic grade determined by mineral paragenesis and spatial distribution. This consistency does not apply to quartz-magnetite and quartz-ilmenite fractionations obtained from rocks in which petrographic evidence of retrogradation is present.
Whereas measured isotopic fractionations among quartz, garnet, ilmenite, and magnetite are approximately related to metamorphic grade, fractionations between these minerals and biotite or muscovite show poor correlation with grade. Variations in muscovite-biotite fractionations are relatively small. These observations are interpreted to mean that muscovite and biotite are affected by retrograde re-equilibration to a greater extent than the anhydrous minerals analyzed.
Measured quartz-ilmenite fractionations range from 12 permil in the biotite zone of central Vermont to 6.5 permil in the sillimanite-orthoclase zone of southeastern Connecticut. Analyses of natural assemblages from the kyanite and sillimanite zones suggest that equilibrium quartz-ilmenite fractionations are approximately 8 percent smaller than corresponding quartz-magnetite fractionations. Employing the quartz-magnetite geothermometer calibrated by O'Neil and Clayton (1964), a temperature of 560°C was obtained for kyanite-bearing schists from Addison County, Vermont. Extending the calibration to quartz-ilmenite fractionations, a temperature of 600°C was obtained for kyanite-schists from Shoshone County, Idaho. At these temperatures kyanite is stable only at pressures exceeding 11 kbars (Bell, 1963), corresponding to lithostatic loads of over 40 km.