7 resultados para amateur media
em CaltechTHESIS
Resumo:
The behaviors of six new cyclophane receptors for organic guest molecules in aqueous media are reported. These new hosts are modifications of more basic parent structures, and the main goal of their examination has been to determine how the modifications affect host selectivity for cationic guests. In particular, we have been interested in determining how additional non-covalent binding interactions can complement the cation-π interactions active in the parent systems. Three types of modifications were made to these systems. Firstly, neutral methoxy and bromine substituents were added to produce four of the six new macrocycles. Secondly, two additional aromatic rings (relative to the parent host) capable of making cation-π interactions with charged guest species were appended. Thirdly, a negatively charged carboxyl group was attached to produce a cavity in which electrostatic interactions should enhance cationic guest binding. ^1H-NMR and circular dichroic techniques were employed to determine the binding affinities of a wide variety of organic guests for the parent and modified structures in aqueous media.
Bromination of the parent host greatly enhances its binding in a general fashion, primarily as the result of hydrophobic interactions. The addition of methoxy groups does not enhance binding, apparently as a result of a collapse of the hosts into a conformation that is not suitable for binding. The appendage of extra aromatic rings enhances the binding of positively charged guests, most likely in response to more complete encapsulation of guest species. The addition of a negatively charged carboxylate enhances the binding to only selective groups of cationic guests. AM1 calculations of the electrostatic potentials of several guests molecules suggests that the enhancements seen with the modified receptor compared to the parent are most likely the result of close contact between regions of highest potential on the guest and the appended carboxylate.
Resumo:
This dissertation is concerned with the development of a new discrete element method (DEM) based on Non-Uniform Rational Basis Splines (NURBS). With NURBS, the new DEM is able to capture sphericity and angularity, the two particle morphological measures used in characterizing real grain geometries. By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing rectangle (DIRECT) global optimization procedure is employed as a solution procedure to the closest-point projection problem, which enables the contact treatment of non-convex particles. A contact dynamics (CD) approach to the NURBS-based discrete method is also formulated. By combining particle shape flexibility, properties of implicit time-integration, and non-penetrating constraints, we target applications in which the classical DEM either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD implementation is made simple by adopting a variational framework, which enables the resulting discrete problem to be readily solved using off-the-shelf mathematical programming solvers. The capabilities of the NURBS-based DEM are demonstrated through 2D numerical examples that highlight the effects of particle morphology on the macroscopic response of granular assemblies under quasistatic and dynamic flow conditions, and a 3D characterization of material response in the shear band of a real triaxial specimen.
Resumo:
We study the behavior of granular materials at three length scales. At the smallest length scale, the grain-scale, we study inter-particle forces and "force chains". Inter-particle forces are the natural building blocks of constitutive laws for granular materials. Force chains are a key signature of the heterogeneity of granular systems. Despite their fundamental importance for calibrating grain-scale numerical models and elucidating constitutive laws, inter-particle forces have not been fully quantified in natural granular materials. We present a numerical force inference technique for determining inter-particle forces from experimental data and apply the technique to two-dimensional and three-dimensional systems under quasi-static and dynamic load. These experiments validate the technique and provide insight into the quasi-static and dynamic behavior of granular materials.
At a larger length scale, the mesoscale, we study the emergent frictional behavior of a collection of grains. Properties of granular materials at this intermediate scale are crucial inputs for macro-scale continuum models. We derive friction laws for granular materials at the mesoscale by applying averaging techniques to grain-scale quantities. These laws portray the nature of steady-state frictional strength as a competition between steady-state dilation and grain-scale dissipation rates. The laws also directly link the rate of dilation to the non-steady-state frictional strength.
At the macro-scale, we investigate continuum modeling techniques capable of simulating the distinct solid-like, liquid-like, and gas-like behaviors exhibited by granular materials in a single computational domain. We propose a Smoothed Particle Hydrodynamics (SPH) approach for granular materials with a viscoplastic constitutive law. The constitutive law uses a rate-dependent and dilation-dependent friction law. We provide a theoretical basis for a dilation-dependent friction law using similar analysis to that performed at the mesoscale. We provide several qualitative and quantitative validations of the technique and discuss ongoing work aiming to couple the granular flow with gas and fluid flows.
Resumo:
The pulsed neutron technique has been used to investigate the decay of thermal neutrons in two adjacent water-borated water finite media. Experiments were performed with a 6x6x6 inches cubic assembly divided in two halves by a thin membrane and filled with pure distilled water on one side and borated water on the other side.
The fundamental decay constant was measured versus the boric acid concentration in the poisoned medium. The experimental results showed good agreement with the predictions of the time dependent diffusion model. It was assumed that the addition of boric acid increases the absorption cross section of the poisoned medium without affecting its diffusion properties: In these conditions, space-energy separability and the concept of an “effective” buckling as derived from diffusion theory were introduced. Their validity was supported by the experimental results.
Measurements were performed with the absorption cross section of the poisoned medium increasing gradually up to 16 times its initial value. Extensive use of the IBM 7090-7094 Computing facility was made to analyze properly the decay data (Frantic Code). Attention was given to the count loss correction scheme and the handling of the statistics involved. Fitting of the experimental results into the analytical form predicted by the diffusion model led to
Ʃav = 4721 sec-1 (±150)
Do = 35972 cm2sec-1 (±800) for water at 21˚C
C (given) = 3420 cm4sec-1
These values, when compared with published data, show that the diffusion model is adequate in describing the experiment.
Resumo:
An exact solution to the monoenergetic Boltzmann equation is obtained for the case of a plane isotropic burst of neutrons introduced at the interface separating two adjacent, dissimilar, semi-infinite media. The method of solution used is to remove the time dependence by a Laplace transformation, solve the transformed equation by the normal mode expansion method, and then invert to recover the time dependence.
The general result is expressed as a sum of definite, multiple integrals, one of which contains the uncollided wave of neutrons originating at the source plane. It is possible to obtain a simplified form for the solution at the interface, and certain numerical calculations are made there.
The interface flux in two adjacent moderators is calculated and plotted as a function of time for several moderator materials. For each case it is found that the flux decay curve has an asymptotic slope given accurately by diffusion theory. Furthermore, the interface current is observed to change directions when the scattering and absorption cross sections of the two moderator materials are related in a certain manner. More specifically, the reflection process in two adjacent moderators appears to depend initially on the scattering properties and for long times on the absorption properties of the media.
This analysis contains both the single infinite and semi-infinite medium problems as special cases. The results in these two special cases provide a check on the accuracy of the general solution since they agree with solutions of these problems obtained by separate analyses.
Resumo:
The resolution of the so-called thermodynamic paradox is presented in this paper. It is shown, in direct contradiction to the results of several previously published papers, that the cutoff modes (evanescent modes having complex propagation constants) can carry power in a waveguide containing ferrite. The errors in all previous “proofs” which purport to show that the cutoff modes cannot carry power are uncovered. The boundary value problem underlying the paradox is studied in detail; it is shown that, although the solution is somewhat complicated, there is nothing paradoxical about it.
The general problem of electromagnetic wave propagation through rectangular guides filled inhomogeneously in cross-section with transversely magnetized ferrite is also studied. Application of the standard waveguide techniques reduces the TM part to the well-known self-adjoint Sturm Liouville eigenvalue equation. The TE part, however, leads in general to a non-self-adjoint eigenvalue equation. This equation and the associated expansion problem are studied in detail. Expansion coefficients and actual fields are determined for a particular problem.
Resumo:
Constitutive modeling in granular materials has historically been based on macroscopic experimental observations that, while being usually effective at predicting the bulk behavior of these type of materials, suffer important limitations when it comes to understanding the physics behind grain-to-grain interactions that induce the material to macroscopically behave in a given way when subjected to certain boundary conditions.
The advent of the discrete element method (DEM) in the late 1970s helped scientists and engineers to gain a deeper insight into some of the most fundamental mechanisms furnishing the grain scale. However, one of the most critical limitations of classical DEM schemes has been their inability to account for complex grain morphologies. Instead, simplified geometries such as discs, spheres, and polyhedra have typically been used. Fortunately, in the last fifteen years, there has been an increasing development of new computational as well as experimental techniques, such as non-uniform rational basis splines (NURBS) and 3D X-ray Computed Tomography (3DXRCT), which are contributing to create new tools that enable the inclusion of complex grain morphologies into DEM schemes.
Yet, as the scientific community is still developing these new tools, there is still a gap in thoroughly understanding the physical relations connecting grain and continuum scales as well as in the development of discrete techniques that can predict the emergent behavior of granular materials without resorting to phenomenology, but rather can directly unravel the micro-mechanical origin of macroscopic behavior.
In order to contribute towards closing the aforementioned gap, we have developed a micro-mechanical analysis of macroscopic peak strength, critical state, and residual strength in two-dimensional non-cohesive granular media, where typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain-scale counterparts (e.g., inter-particle contact forces, fabric, particle displacements, and velocities), providing an across-the-scale basis for better understanding and modeling granular media.
In the same way, we utilize a new DEM scheme (LS-DEM) that takes advantage of a mathematical technique called level set (LS) to enable the inclusion of real grain shapes into a classical discrete element method. After calibrating LS-DEM with respect to real experimental results, we exploit part of its potential to study the dependency of critical state (CS) parameters such as the critical state line (CSL) slope, CSL intercept, and CS friction angle on the grain's morphology, i.e., sphericity, roundness, and regularity.
Finally, we introduce a first computational algorithm to ``clone'' the grain morphologies of a sample of real digital grains. This cloning algorithm allows us to generate an arbitrary number of cloned grains that satisfy the same morphological features (e.g., roundness and aspect ratio) displayed by their real parents and can be included into a DEM simulation of a given mechanical phenomenon. In turn, this will help with the development of discrete techniques that can directly predict the engineering scale behavior of granular media without resorting to phenomenology.