5 resultados para acute phase reactions
em CaltechTHESIS
Resumo:
To make stable and reproducible contacts to GaAs, metals which react with GaAs in the solid-phase should be favored. In this study, contacts formed employing Pd/TiN/Pd/Ag, Pd:Mg/TiN/Pd:Mg/Ag and Ru/TiN/Ru/Ag are studied. The TiN layer is included to investigate its application as diffusion barrier in these metallizations. Contacts to n-GaAs are rectifying and the value of barrier height is modified upon annealing. Contacts to p-GaAs are initially rectifying but exhibit ohmic behaviour after annealing. The modifications in the electrical properties are attributed to the solid-phase reaction of metal and GaAs. The integrity of the contacts relies critically on the success of TiN to prevent the intermixing of Ag overlayer and the underlying layers. At elevated annealing temperatures (450°C), TiN fails to function as a diffusion barrier. As a result, the properties of the contact deteriorates.
Resumo:
Trace volatile organic compounds emitted by biogenic and anthropogenic sources into the atmosphere can undergo extensive photooxidation to form species with lower volatility. By equilibrium partitioning or reactive uptake, these compounds can nucleate into new aerosol particles or deposit onto already-existing particles to form secondary organic aerosol (SOA). SOA and other atmospheric particulate matter have measurable effects on global climate and public health, making understanding SOA formation a needed field of scientific inquiry. SOA formation can be done in a laboratory setting, using an environmental chamber; under these controlled conditions it is possible to generate SOA from a single parent compound and study the chemical composition of the gas and particle phases. By studying the SOA composition, it is possible to gain understanding of the chemical reactions that occur in the gas phase and particle phase, and identify potential heterogeneous processes that occur at the surface of SOA particles. In this thesis, mass spectrometric methods are used to identify qualitatively and qualitatively the chemical components of SOA derived from the photooxidation of important anthropogenic volatile organic compounds that are associated with gasoline and diesel fuels and industrial activity (C12 alkanes, toluene, and o-, m-, and p-cresols). The conditions under which SOA was generated in each system were varied to explore the effect of NOx and inorganic seed composition on SOA chemical composition. The structure of the parent alkane was varied to investigate the effect on the functionalization and fragmentation of the resulting oxidation products. Relative humidity was varied in the alkane system as well to measure the effect of increased particle-phase water on condensed-phase reactions. In all systems, oligomeric species, resulting potentially from particle-phase and heterogeneous processes, were identified. Imines produced by reactions between (NH4)2SO4 seed and carbonyl compounds were identified in all systems. Multigenerational photochemistry producing low- and extremely low-volatility organic compounds (LVOC and ELVOC) was reflected strongly in the particle-phase composition as well.
Resumo:
Our understanding of the processes and mechanisms by which secondary organic aerosol (SOA) is formed is derived from laboratory chamber studies. In the atmosphere, SOA formation is primarily driven by progressive photooxidation of SOA precursors, coupled with their gas-particle partitioning. In the chamber environment, SOA-forming vapors undergo multiple chemical and physical processes that involve production and removal via gas-phase reactions; partitioning onto suspended particles vs. particles deposited on the chamber wall; and direct deposition on the chamber wall. The main focus of this dissertation is to characterize the interactions of organic vapors with suspended particles and the chamber wall and explore how these intertwined processes in laboratory chambers govern SOA formation and evolution.
A Functional Group Oxidation Model (FGOM) that represents SOA formation and evolution in terms of the competition between functionalization and fragmentation, the extent of oxygen atom addition, and the change of volatility, is developed. The FGOM contains a set of parameters that are to be determined by fitting of the model to laboratory chamber data. The sensitivity of the model prediction to variation of the adjustable parameters allows one to assess the relative importance of various pathways involved in SOA formation.
A critical aspect of the environmental chamber is the presence of the wall, which can induce deposition of SOA-forming vapors and promote heterogeneous reactions. An experimental protocol and model framework are first developed to constrain the vapor-wall interactions. By optimal fitting the model predictions to the observed wall-induced decay profiles of 25 oxidized organic compounds, the dominant parameter governing the extent of wall deposition of a compound is identified, i.e., wall accommodation coefficient. By correlating this parameter with the molecular properties of a compound via its volatility, the wall-induced deposition rate of an organic compound can be predicted based on its carbon and oxygen numbers in the molecule.
Heterogeneous transformation of δ-hydroxycarbonyl, a major first-generation product from long-chain alkane photochemistry, is observed on the surface of particles and walls. The uniqueness of this reaction scheme is the production of substituted dihydrofuran, which is highly reactive towards ozone, OH, and NO3, thereby opening a reaction pathway that is not usually accessible to alkanes. A spectrum of highly-oxygenated products with carboxylic acid, ester, and ether functional groups is produced from the substituted dihydrofuran chemistry, thereby affecting the average oxidation state of the alkane-derived SOA.
The vapor wall loss correction is applied to several chamber-derived SOA systems generated from both anthropogenic and biogenic sources. Experimental and modeling approaches are employed to constrain the partitioning behavior of SOA-forming vapors onto suspended particles vs. chamber walls. It is demonstrated that deposition of SOA-forming vapors to the chamber wall during photooxidation experiments can lead to substantial and systematic underestimation of SOA. Therefore, it is likely that a lack of proper accounting for vapor wall losses that suppress chamber-derived SOA yields contribute substantially to the underprediction of ambient SOA concentrations in atmospheric models.
Resumo:
Part I
Present experimental data on nucleon-antinucleon scattering allow a study of the possibility of a phase transition in a nucleon-antinucleon gas at high temperature. Estimates can be made of the general behavior of the elastic phase shifts without resorting to theoretical derivation. A phase transition which separates nucleons from antinucleons is found at about 280 MeV in the approximation of the second virial coefficient to the free energy of the gas.
Part II
The parton model is used to derive scaling laws for the hadrons observed in deep inelastic electron-nucleon scattering which lie in the fragmentation region of the virtual photon. Scaling relations are obtained in the Bjorken and Regge regions. It is proposed that the distribution functions become independent of both q2 and ν where the Bjorken and Regge regions overlap. The quark density functions are discussed in the limit x→1 for the nucleon octet and the pseudoscalar mesons. Under certain plausible assumptions it is found that only one or two quarks of the six types of quarks and antiquarks have an appreciable density function in the limit x→1. This has implications for the quark fragmentation functions near the large momentum boundary of their fragmentation region. These results are used to propose a method of measuring the proton and neutron quark density functions for all x by making measurements on inclusively produced hadrons in electroproduction only. Implications are also discussed for the hadrons produced in electron-positron annihilation.
Resumo:
The Kwoiek Area of British Columbia contains a pendant or screen of metamorphosed sedimentary and volcanic rocks almost entirely surrounded by a portion of the Coast Range Batholith, and intruded by several dozen stocks. The major metamorphic effects were produced by the quartz diorite batholithic rocks, with minor and later effects by the quartz diorite stocks. The sequence of important metamorphic reactions in the metasedimentary and metavolcanic rocks, ranging in grade from chlorite to sillimanite, is:
1. chlorite + carbonate + muscovite → epidote + biotite
2. chlorite + carbonate → actinolite + epidote
3. chlorite + muscovite → garnet + biotite
4. chlorite + epidote → garnet + hornblende
5. chlorite + muscovite → garnet + staurolite + biotite
6. chlorite + muscovite → aluminum silicate + biotite
7. muscovite + staurolite → garnet + aluminum silicate + biotite
8. staurolite → garnet + aluminum silicate
Continuous reactions, occurring between reactions 5 and 7, are:
A. chlorite + (high Ti) biotite + Al2O3 (from plagioclase?)→ garnet + staurolite + (low Ti) biotite + O2
B. muscovite (phengitic) → garnet + staurolite +muscovite (less phengitic) + O2 (?)
Detailed electron microprobe work on garnet, staurolite, biotite, and chlorite shows that:
(1) The garnet porphyroblasts are zoned according to a depletion model, called the Rayleigh depletion model, which assumes equilibrium between the edge of a growing garnet and the minerals which are unzoned, notably biotite, chlorite, and muscovite, but which assumes disequilibrium within the garnet.
(2) The staurolite porphyroblasts are also zoned, and from their zoning patterns reactions A, B, and 5 are documented. Progressive reduction of iron with increasing grade of metamorphism is also inferred from the staurolite zoning patterns.
(3) During a late period of falling temperature garnet continued to grow and the biotite and chlorite reequilibrated. The biotite, chlorite, and garnet edge compositions can vary from point to point in a given thin section, indicating that the volume of equilibrium at the final stage of metamorphism was only a few cubic microns.
(4) The horizon within the garnet that grew at maximum temperature can be identified. The Mg/Fe ratio of this horizon, if the garnet composition is a limiting composition in the Al2O3 - K2O - FeO - MgO tetrahedron, increases systematically with increasing metamorphic grade. Biotite and chlorite compositions also show a general increase in Mg/Fe ratio with increasing metamorphic grade, but staurolite appears to show the reverse effect.
(5) The Mg/Fe ratio at the maximum temperature horizon of the garnet porphyroblasts is a function of its Mn content as evidenced from the study of five garnet-bearing rocks, collected from one outcrop area, with the same assemblage but with differing proportions of minerals.
An important implication of zoned minerals is that the effective composition of a system in a phase lies on the join between the homogeneous minerals (if there are two) and not within three-or- four-phase fields when a zoned mineral, such as garnet or staurolite, is present in the assemblage.
Study of the three aluminum silicates found in the Kwoiek Area showed that a constant pressure change in polymorphs from andalusite to kyanite to sillimanite took place with increasing temperature. This transition series is best explained by the metastable formation of andalusite.
Photographic materials on pages 15, 121, 160, 162, and 164 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.