1 resultado para actions for improvement
em CaltechTHESIS
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (28)
- Archive of European Integration (14)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (29)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (4)
- Brock University, Canada (7)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (61)
- CentAUR: Central Archive University of Reading - UK (86)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (117)
- Cochin University of Science & Technology (CUSAT), India (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Duke University (11)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (27)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (54)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (13)
- Indian Institute of Science - Bangalore - Índia (44)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (145)
- Queensland University of Technology - ePrints Archive (174)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (10)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (3)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (6)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (20)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (11)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
In this thesis we describe a system that tracks fruit flies in video and automatically detects and classifies their actions. We introduce Caltech Fly-vs-Fly Interactions, a new dataset that contains hours of video showing pairs of fruit flies engaging in social interactions, and is published with complete expert annotations and articulated pose trajectory features. We compare experimentally the value of a frame-level feature representation with the more elaborate notion of bout features that capture the structure within actions. Similarly, we compare a simple sliding window classifier architecture with a more sophisticated structured output architecture, and find that window based detectors outperform the much slower structured counterparts, and approach human performance. In addition we test the top performing detector on the CRIM13 mouse dataset, finding that it matches the performance of the best published method.