2 resultados para Yb3 doped

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

<p>This work contains 4 topics dealing with the properties of the luminescence from Ge.</p> <p>The temperature, pump-power and time dependences of the photoluminescence spectra of Li-, As-, Ga-, and Sb-doped Ge crystals were studied. For impurity concentrations less than about 10<sup>15</sup>cm<sup>-3</sup>, emissions due to electron-hole droplets can clearly be identified. For impurity concentrations on the order of 10<sup>16</sup>cm<sup>-3</sup>, the broad lines in the spectra, which have previously been attributed to the emission from the electron-hole-droplet, were found to possess pump-power and time dependent line shape. These properties show that these broad lines cannot be due to emission of electron-hole-droplets alone. We interpret these lines to be due to a combination of emissions from (1) electron-hole- droplets, (2) broadened multiexciton complexes, (3) broadened bound-exciton, and (4) plasma of electrons and holes. The properties of the electron-hole-droplet in As-doped Ge were shown to agree with theoretical predictions.</p> <p>The time dependences of the luminescence intensities of the electron-hole-droplet in pure and doped Ge were investigated at 2 and 4.2K. The decay of the electron-hole-droplet in pure Ge at 4.2K was found to be pump-power dependent and too slow to be explained by the widely accepted model due to Pokrovskii and Hensel et al. Detailed study of the decay of the electron-hole-droplets in doped Ge were carried out for the first time, and we find no evidence of evaporation of excitons by electron-hole-droplets at 4.2K. This doped Ge result is unexplained by the model of Pokrovskii and Hensel et al. It is shown that a model based on a cloud of electron-hole-droplets generated in the crystal and incorporating (1) exciton flow among electron-hole-droplets in the cloud and (2) exciton diffusion away from the cloud is capable of explaining the observed results.</p> <p>It is shown that impurities, introduced during device fabrication, can lead to the previously reported differences of the spectra of laser-excited high-purity Ge and electrically excited Ge double injection devices. By properly choosing the device geometry so as to minimize this Li contamination, it is shown that the Li concentration in double injection devices may be reduced to less than about 10<sup>15</sup>cm<sup>-3</sup> and electrically excited luminescence spectra similar to the photoluminescence spectra of pure Ge may be produced. This proves conclusively that electron-hole-droplets may be created in double injection devices by electrical excitation.</p> <p>The ratio of the LA- to TO-phonon-assisted luminescence intensities of the electron-hole-droplet is demonstrated to be equal to the high temperature limit of the same ratio of the exciton for Ge. This result gives one confidence to determine similar ratios for the electron-hole-droplet from the corresponding exciton ratio in semiconductors in which the ratio for the electron-hole-droplet cannot be determined (e.g., Si and GaP). Knowing the value of this ratio for the electron-hole-droplet, one can obtain accurate values of many parameters of the electron-hole-droplet in these semiconductors spectroscopically.</p>

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<p>PART I</p> <p>The energy spectrum of heavily-doped molecular crystals was treated in the Greens function formulation. The mixed crystal Greens function was obtained by averaging over all possible impurity distributions. The resulting Greens function, which takes the form of an infinite perturbation expansion, was further approximated by a closed form suitable for numerical calculations. The density-of-states functions and optical spectra for binary mixtures of normal naphthalene and deuterated naphthalene were calculated using the pure crystal density-of-state functions. The results showed that when the trap depth is large, two separate energy bands persist, but when the trap depth is small only a single band exists. Furthermore, in the former case it was found that the intensities of the outer Davydov bands are enhanced whereas the inner bands are weakened. Comparisons with previous theoretical calculations and experimental results are also made. </p> <p>PART II</p> <p>The energy states and optical spectra of heavily-doped mixed crystals are investigated. Studies are made for the following binary systems: (1) naphthalene-<u>h</u><sub>8</sub> and <u>d</u><sub>8</sub>, (2) naphthalene--<u>h</u><sub>8</sub> and <u>d</u><sub>4</sub>, and (3) naphthalene--<u>h</u><sub>8</sub> and <u>d</u><sub>1</sub>, corresponding to strong, medium and weak perturbations. In addition to ordinary absorption spectra at 4K, band-to-band transitions at both 4K and 77K are also analyzed with emphasis on their relations to cooperative excitation and overall density-of-states functions for mixed crystals. It is found that the theoretical calculations presented in a previous paper agree generally with experiments except for cluster states observed in system (1) at lower guest concentrations. These features are discussed semi-quantitatively. As to the intermolecular interaction parameters, it is found that experimental results compare favorably with calculations based on experimental density-of-states functions but not with those based on octopole interactions or charge-transfer interactions. Previous experimental results of Sheka and the theoretical model of Broude and Rashba are also compared with present investigations. </p> <p>PART III</p> <p>The phosphorescence, fluorescence and absorption spectra of pyrazine-<u>h</u><sub>4</sub> and <u>d</u><sub>4</sub> have been obtained at 4K in a benzene matrix. For comparison, those of the isotopically mixed crystal pyrazine-<u>h</u><sub>4</sub> in <u>d</u><sub>4</sub> were also taken. All these spectra show extremely sharp and well-resolved lines and reveal detailed vibronic structure. </p> <p>The analysis of the weak fluorescence spectrum resolves the long-disputed question of whether one or two transitions are involved in the near-ultraviolet absorption of pyrazine. The mirror-image relationship between absorption and emission shows that the lowest singlet state is an allowed transition, properly designated as <sup>1</sup>B<sub>3u</sub> <sup>1</sup>A<sub>1g</sub>. The forbidden component <sup>1</sup>B<sub>2g</sub>, predicted by both exciton and MO theories to be below the allowed component, must lie higher. Its exact location still remains uncertain. </p> <p>The phosphorescence spectrum when compared with the excitation phosphorescence spectra, indicates that the lowest triplet state is also symmetry allowed, showing a strong 0-0 band and a mirror-image relationship between absorption and emission. In accordance with previous work, the triplet state is designated as <sup>3</sup>B<sub>3u</sub>.</p> <p>The vibronic structure of the phosphorescence spectrum is very complicated. Previous work on the analysis of this spectrum all concluded that a long progression of <i>v</i><sub>6a</sub> exists. Under the high resolution attainable in our work, the supposed <i>v</i><sub>6a</sub> progression proves to have a composite triplet structure, starting from the second member of the progression. Not only is the <i>v</i><sub>9a</sub> hydrogen-bending mode present as shown by the appearance of the C-D bending mode in the <u>d</u><sub>4</sub> spectrum, but a band of 1207 cm<sup>-1</sup> in the pyrazine in benzene system and 1231 cm<sup>-1</sup> in the mixed crystal system is also observed. This band is assigned as 2<i>v</i><sub>6b</sub> and of a<sub>1g</sub> symmetry. Its anonymously strong intensity in the phosphorescence spectrum is interpreted as due to the Fermi resonance with the 2<i>v</i><sub>6a</sub> and <i>v</i><sub>9a</sub> band.</p> <p>To help resolve the present controversy over the crystal phosphorescence spectrum of pyrazine, detailed vibrational analyses of the emission spectra were made. The fluorescence spectrum has essentially the same vibronic structure as the phosphorescence spectrum. </p>