2 resultados para Wang-Landau algorithm
em CaltechTHESIS
Resumo:
This thesis presents a civil engineering approach to active control for civil structures. The proposed control technique, termed Active Interaction Control (AIC), utilizes dynamic interactions between different structures, or components of the same structure, to reduce the resonance response of the controlled or primary structure under earthquake excitations. The primary control objective of AIC is to minimize the maximum story drift of the primary structure. This is accomplished by timing the controlled interactions so as to withdraw the maximum possible vibrational energy from the primary structure to an auxiliary structure, where the energy is stored and eventually dissipated as the external excitation decreases. One of the important advantages of AIC over most conventional active control approaches is the very low external power required.
In this thesis, the AIC concept is introduced and a new AIC algorithm, termed Optimal Connection Strategy (OCS) algorithm, is proposed. The efficiency of the OCS algorithm is demonstrated and compared with two previously existing AIC algorithms, the Active Interface Damping (AID) and Active Variable Stiffness (AVS) algorithms, through idealized examples and numerical simulations of Single- and Multi-Degree-of Freedom systems under earthquake excitations. It is found that the OCS algorithm is capable of significantly reducing the story drift response of the primary structure. The effects of the mass, damping, and stiffness of the auxiliary structure on the system performance are investigated in parametric studies. Practical issues such as the sampling interval and time delay are also examined. A simple but effective predictive time delay compensation scheme is developed.
Resumo:
The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases.
Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of "integer" (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases.
Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30 years ago, it can still produce novel phenomena. Of much recent interest is the existence of non-Abelian anyons in FQHE systems. Though it is possible to construct wave functions that realize such particles, whether these wavefunctions are the ground state is a difficult quantitative question that must be answered numerically. In this thesis I describe progress using a density-matrix renormalization group algorithm to study a bilayer system thought to host non-Abelian anyons. We find phase diagrams in terms of experimentally relevant parameters, and also find evidence for a non-Abelian phase known as the "interlayer Pfaffian".