4 resultados para Vortex flow

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six topics in incompressible, inviscid fluid flow involving vortex motion are presented. The stability of the unsteady flow field due to the vortex filament expanding under the influence of an axial compression is examined in the first chapter as a possible model of the vortex bursting observed in aircraft contrails. The filament with a stagnant core is found to be unstable to axisymmetric disturbances. For initial disturbances with the form of axisymmetric Kelvin waves, the filament with a uniformly rotating core is neutrally stable, but the compression causes the disturbance to undergo a rapid increase in amplitude. The time at which the increase occurs is, however, later than the observed bursting times, indicating the bursting phenomenon is not caused by this type of instability.

In the second and third chapters the stability of a steady vortex filament deformed by two-dimensional strain and shear flows, respectively, is examined. The steady deformations are in the plane of the vortex cross-section. Disturbances which deform the filament centerline into a wave which does not propagate along the filament are shown to be unstable and a method is described to calculate the wave number and corresponding growth rate of the amplified waves for a general distribution of vorticity in the vortex core.

In Chapter Four exact solutions are constructed for two-dimensional potential flow over a wing with a free ideal vortex standing over the wing. The loci of positions of the free vortex are found and the lift is calculated. It is found that the lift on the wing can be significantly increased by the free vortex.

The two-dimensional trajectories of an ideal vortex pair near an orifice are calculated in Chapter Five. Three geometries are examined, and the criteria for the vortices to travel away from the orifice are determined.

Finally, Chapter Six reproduces completely the paper, "Structure of a linear array of hollow vortices of finite cross-section," co-authored with G. R. Baker and P. G. Saffman. Free streamline theory is employed to construct an exact steady solution for a linear array of hollow, or stagnant cored vortices. If each vortex has area A and the separation is L, then there are two possible shapes if A^(1/2)/L is less than 0.38 and none if it is larger. The stability of the shapes to two-dimensional, periodic and symmetric disturbances is considered for hollow vortices. The more deformed of the two possible shapes is found to be unstable, while the less deformed shape is stable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis covers four different problems in the understanding of vortex sheets, and these are presented in four chapters.

In Chapter 1, free streamline theory is used to determine the steady solutions of an array of identical, hollow or stagnant core vortices in an inviscid, incompressible fluid. Assuming the array is symmetric to rotation through π radians about an axis through any vortex centre, there are two solutions or no solutions depending on whether A^(1/2)/L is less than or greater than 0.38 where A is the area of the vortex and L is the separation distance. Stability analysis shows that the more deformed shape is unstable to infinitesimal symmetric disturbances which leave the centres of the vortices undisplaced.

Chapter 2 is concerned with the roll-up of vortex sheets in homogeneous fluid. The flow over conventional and ring wings is used to test the method of Fink and Soh (1974). Despite modifications which improve the accuracy of the method, unphysical results occur. A possible explanation for this is that small scales are important and an alternate method based on "Cloud-in-Cell" techniques is introduced. The results show small scale growth and amalgamation into larger structures.

The motion of a buoyant pair of line vortices of opposite circulation is considered in Chapter 3. The density difference between the fluid carried by the vortices and the fluid outside is considered small, so that the Boussinesq approximation may be used. A macroscopic model is developed which shows the formation of a detrainment filament and this is included as a modification to the model. The results agree well with the numerical solution as developed by Hill (1975b) and show that after an initial slowdown, the vortices begin to accelerate downwards.

Chapter 4 reproduces completely a paper that has already been published (Baker, Barker, Bofah and Saffman (1974)) on the effect of "vortex wandering" on the measurement of velocity profiles of the trailing vortices behind a wing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vortex rings constitute the main structure in the wakes of a wide class of swimming and flying animals, as well as in cardiac flows and in the jets generated by some moss and fungi. However, there is a physical limit, determined by an energy maximization principle called the Kelvin-Benjamin principle, to the size that axisymmetric vortex rings can achieve. The existence of this limit is known to lead to the separation of a growing vortex ring from the shear layer feeding it, a process known as `vortex pinch-off', and characterized by the dimensionless vortex formation number. The goal of this thesis is to improve our understanding of vortex pinch-off as it relates to biological propulsion, and to provide future researchers with tools to assist in identifying and predicting pinch-off in biological flows.

To this end, we introduce a method for identifying pinch-off in starting jets using the Lagrangian coherent structures in the flow, and apply this criterion to an experimentally generated starting jet. Since most naturally occurring vortex rings are not circular, we extend the definition of the vortex formation number to include non-axisymmetric vortex rings, and find that the formation number for moderately non-axisymmetric vortices is similar to that of circular vortex rings. This suggests that naturally occurring vortex rings may be modeled as axisymmetric vortex rings. Therefore, we consider the perturbation response of the Norbury family of axisymmetric vortex rings. This family is chosen to model vortex rings of increasing thickness and circulation, and their response to prolate shape perturbations is simulated using contour dynamics. Finally, the response of more realistic models for vortex rings, constructed from experimental data using nested contours, to perturbations which resemble those encountered by forming vortices more closely, is simulated using contour dynamics. In both families of models, a change in response analogous to pinch-off is found as members of the family with progressively thicker cores are considered. We posit that this analogy may be exploited to understand and predict pinch-off in complex biological flows, where current methods are not applicable in practice, and criteria based on the properties of vortex rings alone are necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behavior of spheres in non-steady translational flow has been studied experimentally for values of Reynolds number from 0.2 to 3000. The aim of the work was to improve our qualitative understanding of particle transport in turbulent gaseous media, a process of extreme importance in power plants and energy transfer mechanisms.

Particles, subjected to sinusoidal oscillations parallel to the direction of steady translation, were found to have changes in average drag coefficient depending upon their translational Reynolds number, the density ratio, and the dimensionless frequency and amplitude of the oscillations. When the Reynolds number based on sphere diameter was less than 200, the oscillation had negligible effect on the average particle drag.

For Reynolds numbers exceeding 300, the coefficient of the mean drag was increased significantly in a particular frequency range. For example, at a Reynolds number of 3000, a 25 per cent increase in drag coefficient can be produced with an amplitude of oscillation of only 2 per cent of the sphere diameter, providing the frequency is near the frequency at which vortices would be shed in a steady flow at the mean speed. Flow visualization shows that over a wide range of frequencies, the vortex shedding frequency locks in to the oscillation frequency. Maximum effect at the natural frequency and lock-in show that a non-linear interaction between wake vortex shedding and the oscillation is responsible for the increase in drag.