8 resultados para Vidros de spins

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent theoretical developments in the reggeization of inelastic processes involving particles with high spin are incorporated into a model of vector meson production. A number of features of experimental differential cross sections and density matrices are interpreted in terms of this model.

The method chosen for reggeization of helicity amplitudes first separates kinematic zeros and singularities from the parity-conserving amplitudes and then applies results of Freedman and Wang on daughter trajectories to the remaining factors. Kinematic constraints on helicity amplitudes at t = 0 and t = (M – MΔ)2 are also considered.

It is found that data for reactions of types πN→VN and πN→VΔ are consistent with a model of this type in which all kinematic constraints at t = 0 are satisfied by evasion (vanishing of residue functions). As a quantitative test of the parametrization, experimental differential cross sections of vector meson production reactions dominated by pion trajectory exchange are compared with the theory. It is found that reduced residue functions are approximately constant, once the kinematic behavior near t = (M – MΔ)2 has been removed.

The alternative possibility of conspiracy between amplitudes is also discussed; and it is shown that unless conspiracy is present, some amplitudes allowed by angular momentum conservation will not contribute with full strength in the forward direction. An example, γp→π+n in which the data for dσ/dt indicate conspiracy, is studied in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hartree-Fock (HF) calculations have had remarkable success in describing large nuclei at high spin, temperature and deformation. To allow full range of possible deformations, the Skyrme HF equations can be discretized on a three-dimensional mesh. However, such calculations are currently limited by the computational resources provided by traditional supercomputers. To take advantage of recent developments in massively parallel computing technology, we have implemented the LLNL Skyrme-force static and rotational HF codes on Intel's DELTA and GAMMA systems at Caltech.

We decomposed the HF code by assigning a portion of the mesh to each node, with nearest neighbor meshes assigned to nodes connected by communication· channels. This kind of decomposition is well-suited for the DELTA and the GAMMA architecture because the only non-local operations are wave function orthogonalization and the boundary conditions of the Poisson equation for the Coulomb field.

Our first application of the HF code on parallel computers has been the study of identical superdeformed (SD) rotational bands in the Hg region. In the last ten years, many SD rotational bands have been found experimentally. One very surprising feature found in these SD rotational bands is that many pairs of bands in nuclei that differ by one or two mass units have nearly identical deexcitation gamma-ray energies. Our calculations of the five rotational bands in ^(192)Hg and ^(194)Pb show that the filling of specific orbitals can lead to bands with deexcitation gamma-ray energies differing by at most 2 keV in nuclei differing by two mass units and over a range of angular momenta comparable to that observed experimentally. Our calculations of SD rotational bands in the Dy region also show that twinning can be achieved by filling or emptying some specific orbitals.

The interpretation of future precise experiments on atomic parity nonconservation (PNC) in terms of parameters of the Standard Model could be hampered by uncertainties in the atomic and nuclear structure. As a further application of the massively parallel HF calculations, we calculated the proton and neutron densities of the Cesium isotopes from A = 125 to A = 139. Based on our good agreement with experimental charge radii, binding energies, and ground state spins, we conclude that the uncertainties in the ratios of weak charges are less than 10^(-3), comfortably smaller than the anticipated experimental error.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the preparation of small organic paramagnets, these structures may conceptually be divided into spin-containing units (SCs) and ferromagnetic coupling units (FCs). The synthesis and direct observation of a series of hydrocarbon tetraradicals designed to test the ferromagnetic coupling ability of m-phenylene, 1,3-cyclobutane, 1,3- cyclopentane, and 2,4-adamantane (a chair 1,3-cyclohexane) using Berson TMMs and cyclobutanediyls as SCs are described. While 1,3-cyclobutane and m-phenylene are good ferromagnetic coupling units under these conditions, the ferromagnetic coupling ability of 1,3-cyclopentane is poor, and 1,3-cyclohexane is apparently an antiferromagnetic coupling unit. In addition, this is the first report of ferromagnetic coupling between the spins of localized biradical SCs.

The poor coupling of 1,3-cyclopentane has enabled a study of the variable temperature behavior of a 1,3-cyclopentane FC-based tetraradical in its triplet state. Through fitting the observed data to the usual Boltzman statistics, we have been able to determine the separation of the ground quintet and excited triplet states. From this data, we have inferred the singlet-triplet gap in 1,3-cyclopentanediyl to be 900 cal/mol, in remarkable agreement with theoretical predictions of this number.

The ability to simulate EPR spectra has been crucial to the assignments made here. A powder EPR simulation package is described that uses the Zeeman and dipolar terms to calculate powder EPR spectra for triplet and quintet states.

Methods for characterizing paramagnetic samples by SQUID magnetometry have been developed, including robust routines for data fitting and analysis. A precursor to a potentially magnetic polymer was prepared by ring-opening metathesis polymerization (ROMP), and doped samples of this polymer were studied by magnetometry. While the present results are not positive, calculations have suggested modifications in this structure which should lead to the desired behavior.

Source listings for all computer programs are given in the appendix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General Relativity predicts the existence of gravitational waves, which carry information about the physical and dynamical properties of their source. One of the many promising sources of gravitational waves observable by ground-based instruments, such as in LIGO and Virgo, is the coalescence of two compact objects (neutron star or black hole). Black holes and neutron stars sometimes form binaries with short orbital periods, radiating so strongly in gravitational waves that they coalesce on astrophysically short timescales. General Relativity gives precise predictions for the form of the signal emitted by these systems. The most recent searches for theses events used waveform models that neglected the effects of black hole and neutron star spin. However, real astrophysical compact objects, especially black holes, are expected to have large spins. We demonstrate here a data analysis infrastructure which achieves an improved sensitivity to spinning compact binaries by the inclusion of spin effects in the template waveforms. This infrastructure is designed for scalable, low-latency data analysis, ideal for rapid electromagnetic followup of gravitational wave events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past few decades, ferromagnetic spinwave resonance in magnetic thin films has been used as a tool for studying the properties of magnetic materials. A full understanding of the boundary conditions at the surface of the magnetic material is extremely important. Such an understanding has been the general objective of this thesis. The approach has been to investigate various hypotheses of the surface condition and to compare the results of these models with experimental data. The conclusion is that the boundary conditions are largely due to thin surface regions with magnetic properties different from the bulk. In the calculations these regions were usually approximated by uniform surface layers; the spins were otherwise unconstrained except by the same mechanisms that exist in the bulk (i.e., no special "pinning" at the surface atomic layer is assumed). The variation of the ferromagnetic spinwave resonance spectra in YIG films with frequency, temperature, annealing, and orientation of applied field provided an excellent experimental basis for the study.

This thesis can be divided into two parts. The first part is ferromagnetic resonance theory; the second part is the comparison of calculated with experimental data in YIG films. Both are essential in understanding the conclusion that surface regions with properties different from the bulk are responsible for the resonance phenomena associated with boundary conditions.

The theoretical calculations have been made by finding the wave vectors characteristic of the magnetic fields inside the magnetic medium, and then combining the fields associated with these wave vectors in superposition to match the specified boundary conditions. In addition to magnetic boundary conditions required for the surface layer model, two phenomenological magnetic boundary conditions are discussed in detail. The wave vectors are easily found by combining the Landau-Lifshitz equations with Maxwell's equations. Mode positions are most easily predicted from the magnetic wave vectors obtained by neglecting damping, conductivity, and the displacement current. For an insulator where the driving field is nearly uniform throughout the sample, these approximations permit a simple yet accurate calculation of the mode intensities. For metal films this calculation may be inaccurate but the mode positions are still accurately described. The techniques necessary for calculating the power absorbed by the film under a specific excitation including the effects of conductivity, displacement current and damping are also presented.

In the second part of the thesis the properties of magnetic garnet materials are summarized and the properties believed associated with the two surface regions of a YIG film are presented. Finally, the experimental data and calculated data for the surface layer model and other proposed models are compared. The conclusion of this study is that the remarkable variety of spinwave spectra that arises from various preparation techniques and subsequent treatments can be explained by surface regions with magnetic properties different from the bulk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction 32S(3He, α) 31S has been used to locate 42 levels in 31S. For 11 of the first 17 levels ℓn-values have been determined. The first 6 excited states of 31S have been studied by applying the particle-gamma correlation method of Litherland and Ferguson (their Method II) to the reaction 32S(3He, αγ) 31S. The resulting spins and parities are: EX, Jπ = 1.25 MeV, 3/2+; 2.23 MeV, 5/2+; 3.08 MeV, 1/2+; 3.29 MeV, 5/2+, 3/2+; 3.35 MeV, 7/2, 3/2; 3.44 MeV, 3/2+. Mixing and branching ratios have also been determined. The ground state Q-value for the reaction 32S(3He, α)31S has been measured to be 5.538 ± 0.006 MeV. Analysis of the spectra of the reaction 32S(3He, α)33Cl which were obtained as a by-product of the spectra of the reaction 32S(3He, α) 31S located levels in 33Cl at the following excitation energies: 0, 810 ± 9, (1978 ± 14), 2351 ± 9, 2686 ± 8, 2848 ± 9 (a known doublet), 2980 ± 9, and 4119 ± 10 keV. The 2.0 MeV level was only weakly populated, and to confirm its existence the reaction 36Ar(p, α)33Cl has been studied. In this reaction the 2.0 MeV level was strongly populated and the measured excitation energy was 1999 ± 20 keV. The experimental results for 31S and 33Cl are compared with their analogs and with nuclear model predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two lowest T = 3/2 levels in 21Na have been studied in the 19F(3He, n), 20Ne (p,p) and 20Ne (p,p’) reactions, and their excitation energies, spins, parities and widths have been determined. In a separate investigation, branching ratios were measured for the isospin-nonconserving particle decays of the lowest T = 3/2 levels in 17O and 17F to the ground state and first two excited states of 16O, by studying the 15N(3He,n) 17F*(p) 16O and 18O(3He, α)17O*(n) 16O reactions.

The 19F(3He,n) 21Na reaction was studied at incident energies between 4.2 and 5.9 MeV using a pulsed-beam neutron-time-of-flight spectrometer. Two T = 3/2 levels were identified at excitation energies of 8.99 ± 0.05 MeV (J > ½) and 9.22 ± 0.015 MeV (J π = ½+, Γ ˂ 40 keV). The spins and parities were determined by a comparison of the measured angular distributions with the results of DWBA calculations.

These two levels were also obsesrved as isospin-forbidden resonances in the 20Ne(p,p) and 20Ne(p,p’) reactions. Excitation energies were measured and spins, parities, and widths were determined from a single level dispersion theory analysis. The following results were obtained:

Ex = 8.973 ± 0.007 MeV, J π = 5/2 + or 3/2+, Γ ≤ 1.2 keV,

Γpo = 0.1 ± 0.05 keV; Ex = 9.217 ± 0.007 MeV, Jπ = ½ +,

Γ = 2.3 ± 0.5 keV, Γpo = 1.1 ± 0.3 keV.

Isospin assignments were made on the basis of excitation energies, spins, parities, and widths.

Branching ratios for the isospin-nonconserving proton decays of the 11.20 MeV, T = 3/2 level in 17F were measured by the 15N(3He,n) 17 F*(p) 16O reaction to be 0.088 ± 0.016 to the ground state of 16O and 0.22 ± 0.04 to the unresolved 6.05 and 6.13 MeV levels of 16O. Branching ratios for the neutron decays of the analogous T = 3/2 level, at 11.08 MeV in 17O, were measured by the 16O(3He, α)17O*(n)16O reaction to be 0.91 ± 0.15 to the ground state of 16O and 0.05 ± 0.02 to the unresolved 6.05 and 6.13 MeV states. By comparing the ratios of reduced widths for the mirror decays, the form of the isospin impurity in the T = 3/2 levels is shown to depend on Tz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This document introduces the planned new search for the neutron Electric Dipole Moment at the Spallation Neutron Source at the Oak Ridge National Laboratory. A spin precession measurement is to be carried out using Ultracold neutrons diluted in a superfluid Helium bath at T = 0.5 K, where spin polarized 3He atoms act as detector of the neutron spin polarization. This manuscript describes some of the key aspects of the planned experiment with the contributions from Caltech to the development of the project.

Techniques used in the design of magnet coils for Nuclear Magnetic Resonance were adapted to the geometry of the experiment. Described is an initial design approach using a pair of coils tuned to shield outer conductive elements from resistive heat loads, while inducing an oscillating field in the measurement volume. A small prototype was constructed to test the model of the field at room temperature.

A large scale test of the high voltage system was carried out in a collaborative effort at the Los Alamos National Laboratory. The application and amplification of high voltage to polished steel electrodes immersed in a superfluid Helium bath was studied, as well as the electrical breakdown properties of the electrodes at low temperatures. A suite of Monte Carlo simulation software tools to model the interaction of neutrons, 3He atoms, and their spins with the experimental magnetic and electric fields was developed and implemented to further the study of expected systematic effects of the measurement, with particular focus on the false Electric Dipole Moment induced by a Geometric Phase akin to Berry’s phase.

An analysis framework was developed and implemented using unbinned likelihood to fit the time modulated signal expected from the measurement data. A collaborative Monte Carlo data set was used to test the analysis methods.