20 resultados para VINYL-TYPE POLYMERIZATION
em CaltechTHESIS
Resumo:
Two major topics are covered: the first chapter is focused on the development of post-metallocene complexes for propylene polymerization. The second and third chapters investigate the consequences of diisobutylaluminum hydride (HAliBu2) additives in zirconocene based polymerization systems.
The synthesis, structure, and solution behavior of early metal complexes with a new tridentate LX2 type ligand, bis(thiophenolate)pyridine ((SNS) = (2-C6H4S)2-2,6-C5H3N) are investigated. SNS complexes of Ti, Zr, and Ta having dialkylamido coligands were synthesized and structurally characterized. The zirconium complex, (SNS)Zr(NMe2)2, displays C2 symmetry in the solid state. Solid-state structures of tantalum complexes (SNS)Ta(NMe2)3 and (SNS)TaCl(NEt2)2 also display pronounced C2 twisting of the SNS ligand. 1D and 2D NMR experiments show that (SNS)Ta(NMe2)3 is fluxional with rotation about the Ta N(amide) bonds occurring on the NMR timescale. The fluxional behavior of (SNS)TaCl(NEt2)2 in solution was also studied by variable temperature 1H NMR. Observation of separate signals for the diastereotopic protons of the methylene unit of the diethylamide indicates that the complex remains locked on the NMR timescale in one diastereomeric conformation at temperatures below -50 °C.
Reduction of Zr(IV) metallocenium cations with sodium amalgam (NaHg) produces EPR signals assignable to Zr(III) metallocene complexes. Thus, chloro-bridged heterobinuclear ansa-zirconocenium cation [((SBI))Zr(μ-Cl)2AlMe2]+B(C6F5)4¯ (SBI = rac-dimethylsilylbis(1-indenyl)), gives rise to an EPR signal assignable to the complex (SBI)ZrIII(μ-Cl)2AlMe2, while (SBI)ZrIII-Me and (SBI)ZrIII(-H)2AliBu2 are formed by reduction of [(SBI)Zr(μ-Me)2AlMe2]+B(C6F5)4¯ and [(SBI)Zr(μ-H)3(AliBu2)2]+B(C6F5)4¯, respectively. These products are also formed, along with (SBI)ZrIII-iBu and [(SBI)ZrIII]+ AlR4¯ when (SBI)ZrMe2 reacts with HAliBu2, eliminating isobutane en route to the Zr(III) complex. Studies concerning the interconversion reactions between these and other (SBI)Zr(III) complexes and reaction mechanisms involved in their formation are also reported.
The addition of HAliBu2 to precatalyst [(SBI)Zr(µ-H)3(AliBu2)2]+ significantly slows the polymerization of propylene and changes the kinetics of polymerization from 1st to 2nd order with respect to propylene. This is likely due to competitive inhibition by HAliBu2. When the same reaction is investigated using [(nBuCp)2Zr(μ-H)3(AliBu2)2]+, hydroalumination between propylene and HAliBu2 is observed instead of propylene polymerization.
Resumo:
The isotope effect on propagation rate was determined for four homogeneous ethylene polymerization systems. The catalytic system Cp_2Ti(Et)Cl + EtA1Cl_2 has a k^H_p/k^D_p = 1.035 ± 0.03. This result strongly supports an insertion mechanism which does not involve a hydrogen migration during the rate determining step of propagation (Cossee mechanism). Three metal-alkyl free systems were also studied. The catalyst I_2 (PMe_3)_3Ta(neopentylidene)(H) has a k^H_p/k^D_p = 1.709. It is interpreted as a primary isotope effect involving a non-linear a-hydrogen migration during the rate determining step of propagation (Green mechanism). The lanthanide complexes Cp*_2LuMe•Et_2O and Cp*_2YbMe•Et_2O have a k^H_p/k^D_p = 1.46 and 1.25, respectively. They are interpreted as primary isotope effects due to a partial hydrogen migration during the rate determining step of propagation.
The presence of a precoordination or other intermediate species during the polymerization of ethylene by the mentioned metal-alkyl free catalysts was sought by low temperature NMR spectroscopy. However, no evidence for such species was found. If they exist, their concentrations are very small or their lifetimes are shorter than the NMR time scale.
Two titanocene (alkenyl)chlorides (hexenyl 1 and heptenyl 2 were prepared from titanocene dichloride and a THF solution of the corresponding alkenylmagnesium chloride. They do not cyclize in solution when alone, but cyclization to their respective titanocene(methyl(cycloalkyl) chlorides occurs readily in the presence of a Lewis acid. It is demonstrated that such cyclization occurs with the alkenyl ligand within the coordination sphere of the titanium atom. Cyclization of 1 with EtAlCl_2 at 0°C occurs in less than 95 msec (ethylene insertion time), as shown by the presence of 97% cyclopentyl-capped oligomers when polymerizing ethylene with this system. Some alkyl exchange occurs (3%). Cyclization of 2 is slower under the same reaction conditions and is not complete in 95 msec as shown by the presence of both cyclohexyl-capped oligomers (35%) and odd number α-olefin oligomers (50%). Alkyl exchange is more extensive as evidenced by the even number n-alkanes (15%).
Cyclization of 2-d_1 (titanocene(hept-6-en-1-yl-1-d_1)chloride) with EtA1Cl_2 demonstrated that for this system there is no α-hydrogen participation during said process. The cyclization is believed to occur by a Cossee-type mechanism. There was no evidence for precoordination of the alkenyl double bond during the cyclization process.
Resumo:
A variety of molecular approaches have been used to investigate the structural and enzymatic properties of rat brain type ll Ca^(2+) and calmodulin-dependent protein kinase (type ll CaM kinase). This thesis describes the isolation and biochemical characterization of a brain-region specific isozyme of the kinase and also the regulation the kinase activity by autophosphorylation.
The cerebellar isozyme of the type ll CaM kinase was purified and its biochemical properties were compared to the forebrain isozyme. The cerebellar isozyme is a large (500-kDa) multimeric enzyme composed of multiple copies of 50-kDa α subunits and 60/58-kDa β/β’ subunits. The holoenzyme contains approximately 2 α subunits and 8 β subunits. This contrasts to the forebrain isozyme, which is also composed of and β/β'subunits, but they are assembled into a holoenzyme of approximately 9 α subunits and 3 β/β ' subunits. The biochemical and enzymatic properties of the two isozymes are similar. The two isozymes differ in their association with subcellular structures. Approximately 85% of the cerebellar isozyme, but only 50% of the forebrain isozyme, remains associated with the particulate fraction after homogenization under standard conditions. Postsynaptic densities purified from forebrain contain the forebrain isozyme, and the kinase subunits make up about 16% of their total protein. Postsynaptic densities purified from cerebellum contain the cerebellar isozyme, but the kinase subunits make up only 1-2% of their total protein.
The enzymatic activity of both isozymes of the type II CaM kinase is regulated by autophosphorylation in a complex manner. The kinase is initially completely dependent on Ca^(2+)/calmodulin for phosphorylation of exogenous substrates as well as for autophosphorylation. Kinase activity becomes partially Ca^(2+) independent after autophosphorylation in the presence of Ca^(2+)/calmodulin. Phosphorylation of only a few subunits in the dodecameric holoenzyme is sufficient to cause this change, suggesting an allosteric interaction between subunits. At the same time, autophosphorylation itself becomes independent of Ca^(2+) These observations suggest that the kinase may be able to exist in at least two stable states, which differ in their requirements for Ca^(2+)/calmodulin.
The autophosphorylation sites that are involved in the regulation of kinase activity have been identified within the primary structure of the α and β subunits. We used the method of reverse phase-HPLC tryptic phosphopeptide mapping to isolate individual phosphorylation sites. The phosphopeptides were then sequenced by gas phase microsequencing. Phosphorylation of a single homologous threonine residue in the α and β subunits is correlated with the production of the Ca^(2+) -independent activity state of the kinase. In addition we have identified several sites that are phosphorylated only during autophosphorylation in the absence of Ca^(2+)/ calmodulin.
Resumo:
The synthesis of a sterically tailored ligand array (M)_2((C_5H_2-2-Si(CH_3)_3-4-C(CH_3)_3)S_2i(CH_3)_2]("M_2Bp") (M = Li, 16; K, 19) is described. Transmetallation of Li_2Bp with YCl_3(THF)_3 affords exclusively the C_2 symmetric product rac-[BpY(µ_2-Cl)_2Li(THF)_2], 20. A X-ray crystal structure of 20 has been determined; triclinic, P1, a= 13.110 (8), b = 17.163 (15), c = 20.623 (14) Å, α = 104.02 (7), β = 99.38 (5), γ = 100.24 (6)° , Z = 4, R = 0.056. Transmetallation of K_2Bp with YCl_3(THF)_3 affords the halide free complex rac-BpYCl, 23. The corresponding rac-BpLaCl, 28, is prepared in an anlogous manner. In all cases the achiral meso isomer is not obtained since only for the racemic isomers are the unfavorable steric interactions between the Si(CH3)_3 groups in the narrow portion of the [Cp-M'-Cp] wedge avoided. Alkylation of 20 or 23 with LiCH(Si(CH_3)_3)_2 affords rac-BpYCH(Si(CH_3)_3)_2, 26 in good yield. Alkylation of 28 with LiCH(Si(CH_3)_3)_2 affords rac-BpLaCH(Si(CH_3)_3)_2 29. Hydrogenation of 26 cleanly affords the bridging hydride species [BpY(µ_2-H)]_2, 27, as the homochiral (R,R) and (S,S) dimeric pairs. 26 is an efficient initiator for the polymerization of ethylene to high molecular weight linear polyethylene. 27 catalyzes the polymerization of propylene (25% v/v in methylcyclohexane) and neat samples of 1-butene, 1-pentene, 1-hexene to moderately high molecular weight polymers: polypropylene (M_n = 4,200, PDI 2.32, T_m 157 °C); poly-1-butene (M_n = 8,500, PDI 3.44, T_m 105 °C); poly-1-pentene (M_n = 20,000, PDI 1.99, T_m 73 °C); poly-1-hexene (M_n = 24,000, PDI 1.75, T_m < 25 °C). ^(13)C NMR spectra at the pentad analysis level indicates that the degree of isotacticity is 99% mmmm for all polymer samples. 27 is the first single component iso-specific α-olefin polymerization catalyst. The presumed origins of the high isospecificity are presented.
Resumo:
This thesis consists of three separate studies of roles that black holes might play in our universe.
In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.
In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.
In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.
Resumo:
Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.
The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.
Resumo:
This thesis focuses mainly on linear algebraic aspects of combinatorics. Let N_t(H) be an incidence matrix with edges versus all subhypergraphs of a complete hypergraph that are isomorphic to H. Richard M. Wilson and the author find the general formula for the Smith normal form or diagonal form of N_t(H) for all simple graphs H and for a very general class of t-uniform hypergraphs H.
As a continuation, the author determines the formula for diagonal forms of integer matrices obtained from other combinatorial structures, including incidence matrices for subgraphs of a complete bipartite graph and inclusion matrices for multisets.
One major application of diagonal forms is in zero-sum Ramsey theory. For instance, Caro's results in zero-sum Ramsey numbers for graphs and Caro and Yuster's results in zero-sum bipartite Ramsey numbers can be reproduced. These results are further generalized to t-uniform hypergraphs. Other applications include signed bipartite graph designs.
Research results on some other problems are also included in this thesis, such as a Ramsey-type problem on equipartitions, Hartman's conjecture on large sets of designs and a matroid theory problem proposed by Welsh.
Resumo:
Titanocene metallacyclobutanes show a wide variety of reactivites with organic and inorganic reagents. Their reactions include methylene transfer to organic carbonyls, formation of enolates, electron transfer from activated alkyl chlorides, olefin metathesis, ring opening polymerization. Recently, preparations of heterobinuclear µ-methylene complexes were reported. In this thesis, mechanistic, synthetic, and structural studies of the heterobinuclear µ-methylene complexes will be described. Also, the reaction of titanocene methylidene trimethylphosphine complex with alkene sulfide and styrene sulfide will be presented.
Heterobinuclear µ-methylene-µ-methyl complexes C_(p2)Ti(µ-CH_2)( µ-CH_3)M(1,5-COD) have been prepared (M = Rh, Ir). X-ray crystallography showed that the methyl group of the complex was bonded to the rhodium and bridges to the titanium through an agostic bond. The ^(1)H,^(13)CNMR, IR spectra along with partial deuteration studies supported the structure in both solution and solid state. Activation of the agostic bond is demonstrated by the equilibration of the µ-CH_3 and µ-CH_2 groups. A nonlinear Arrhenius plot, an unusually large kinetic isotope effect (24(5)), and a large negative activation entropy (-64(3)eu) can be explained by the quantum-mechanical tunneling. Calculated rate constants with Bell-type barrier fitted well with the observed one. This equilibration was best explained by a 4e-4c mechanism (or σ bond metathesis) with the character of quantum-mechanical tunneling.
Heterobinuclear µ-methylene-µ-phenyl complexes were synthesized. Structural study of C_(p2)Ti(µ-CH_(2))(µ-p-Me_(2)NC_(6)H_(4))Rh(l,5-COD) showed that the two metal atoms are bridged by the methylene carbon and the ipso carbon of the p-N,N-dimethylarninophenyl group. The analogous structure of C_(p2))Ti(µ-CH_(2))(µ-o-MeOC_(6)H_(4))Rh(1,5-COD) has been verified by the differential NOE. The aromaticity of the phenyl group observed by ^(1)H NMR, was confirmed by the comparison of the C-C bond lengths in the crystallographic structure. The unusual downfield shifts of the ipso carbon in the ^(13)C NMR are assumed to be an indication of the interaction between the ipso carbon and electron-deficient titanium.
Titanium-platinum heterobinuclear µ-methylene complexes C_(p2)Ti(µ-CH_(2))(µ -X)Pt(Me)(PM_(2)Ph) have been prepared (X= Cl, Me). Structural studies indicate the following:(1) the Ti-CH2 bond possesses residual double bond character, (2) there is a dative Pt→Ti interaction which may be regarded as a π back donation from the platinum atom to the 'Ti=CH_(2)'' group, and (3) the µ-CH_3 group is bound to the titanium atom through a three-center, two-electron agostic bond.
Titanocene (η^(2)-thioformaldehyde)•PMe_3 was prepared from C_(p2)Ti=CH_(2)•PMe_3 and sulfur-containing organic compounds (e.g. alkene sulfide, triphenylphosphine sulfide) including elemental sulfur. Mechanistic studies utilizing trans-styrene sulfide-d_1 suggested the stepwise reaction to explain equimolar mixture of trans- and cis-styrene-d_1 as by-products. The product reacted with methyl iodide to produce cationic titanocene (η_(2)-thiomethoxymethyl) complex. Complexes having less coordinating anion like BF_4 or BPh_4 could be obtained through metathesis. Together with structural analyses, the further reactivities of the complexes have been explored.
The complex C_(p2)TiOCH_(2)CH(Ph)CH_2 was prepared from the compound C_(p2)Ti=CH_(2)-PMe_3 and styrene oxide. The product was characterized with ^(1)H-^(1)H correlated 2-dimensional NMR, selective decoupling of ^(1)H NMR, and differential NOE. Stereospecificity of deuterium in the product was lost when trans-styrene oxide-d_1 was allowed to react. Relative rates of the reaction were measured with varying substituents on the phenyl ring. Better linearity (r = -0.98, p^(+) = -0.79) was observed with σ_(p)^(+)than σ(r = -0.87, p = -1.26). The small magnitude of p^+ value and stereospecificity loss during the formation of product were best explained by the generation of biradicals, but partial generation of charge cannot be excluded. Carbonylation of the product followed by exposure to iodine yields the corresponding β-phenyl γ-lactone.
Resumo:
A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.
The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.
A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.
Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.
Resumo:
This dissertation covers progress with bimetallic polymerization catalysts. The complexes we have designed were aimed at expanding the capabilities of homogeneous polymerization catalysts by taking advantage of multimetallic effects. Such effects were examined in group 4 and group 10 bimetallic complexes; proximity and steric repulsion were determined to be major factors in the effects observed.
Chapters 2 and 3 introduce the rigid p-terphenyl dinucleating framework utilized in most of this thesis. The permethylation of the central arene allows for the separation of syn and anti atropisomers of the terphenyl compounds. Kinetic studies were carried out to examine the isomerization of the dinucleating bis(salicylaldimine) ligand precursors. Metallation of the syn and anti bis(salicylaldimine)s using Ni(Me)2(tmeda) and excess pyridine afforded dinickel bisphenoxyiminato complexes with a methyl and a pyridyl ligand on each nickel. The syn and anti atropisomers of the dinickel complexes were structurally characterized and utilized in ethylene and ethylene/α-olefin polymerizations. Monometallic analogues were also synthesized and tested for polymerization activity. Ethylene polymerizations were performed in the presence of primary, secondary, and tertiary amines – additives that generally deactivate nickel polymerization catalysts. Inhibition of this deactivation was observed with the syn atropisomer of the bimetallic species, but not with the anti or monometallic analogues. A mechanism was proposed wherein steric repulsion of the substituents on proximal nickel centers disfavors simultaneous ligation of base to both of the metal centers. The bimetallic effect has been explored with respect to size and binding ability of the added base.
Chapter 4 presents the optimization of the bisphenoxyimine ligand synthesis and synthesis of syn and anti m-terphenyl analogues. Metallation with NiClMe(PMe3)2 yielded phosphine-ligated dinickel complexes, which have been structurally characterized. Ethylene/1-hexene copolymerizations in the presence of amines using Ni(COD)2 as a phosphine scavenger showed significantly improved activity relative to the pyridine-ligated analogues. Incorporation of amino olefins in copolymerizations with ethylene was accomplished, and a mechanism was proposed based on proximal effects. Copolymerization trials with a variety of amino olefins and ethylene/1-hexene/amino olefin terpolymerizations were completed.
Early transition metal complexes based on the rigid p-terphenyl framework were designed with a variety of donor sets (Chapter 5 and Appendix B). Chapter 5 details the use of syn dizirconium di[amine bis(phenolate)] complexes for isoselective 1-hexene and propylene homopolymerizations. Ligand variation and monometallic complexes were studied to determine the origin of tacticity control. A mechanistic proposal was presented based on the symmetry at zirconium and the steric effects of the proximal metal center. Appendix B covers additional studies of bimetallic early transition metal complexes based on the p-terphenyl. Dititanium, dizirconium, and asymmetric complexes with bisphenoxyiminato ligands and derivatives thereof were targeted. Progress toward the synthesis of these complexes is described along with preliminary polymerization data. 1-hexene/diene copolymerizations and attempted polymerizations in the presence of ethers and esters with the syn dizirconium di[amine bis(phenolate)] complexes demonstrate the potential for further applications of this system in catalysis.
Appendix A includes work toward palladium catalysts for insertion polymerization of polar monomers. These complexes were based on dioxime and diimine frameworks with the intent of binding Lewis acidic metals at the oxime oxygens, at pendant phenolic donors, or at pendant aminediol moieties. The synthesis and structural characterization of a number of palladium and Lewis acid complexes is presented. Due to the instability of the desired species, efforts toward isolation of the desired complexes proved unsuccessful, though preliminary ethylene/methyl acrylate copolymerizations using in situ activation of the palladium species were attempted.
Resumo:
The complementary techniques of low-energy, variable-angle electron-impact spectroscopy and ultraviolet variable-angle photoelectron spectroscopy have been used to study the electronic spectroscopy and structure of several series of molecules. Electron-impact studies were performed at incident beam energies between 25 eV and 100 eV and at scattering angles ranging from 0° to 90°. The energy-loss regions from 0 eV to greater than 15 eV were studied. Photoelectron spectroscopic studies were conducted using a HeI radiation source and spectra were measured at scattering angles from 45° to 90°. The molecules studied were chosen because of their spectroscopic, chemical, and structural interest. The operation of a new electron-impact spectrometer with multiple-mode target source capability is described. This spectrometer has been used to investigate the spin-forbidden transitions in a number of molecular systems.
The electron-impact spectroscopy of the six chloro-substituted ethylenes has been studied over the energy-loss region from 0-15 eV. Spin-forbidden excitations corresponding to the π → π*, N → T transition have been observed at excitation energies ranging from 4.13 eV in vinyl chloride to 3.54 eV in tetrachloroethylene. Symmetry-forbidden transitions of the type π → np have been oberved in trans-dichloroethyene and tetrachlor oethylene. In addition, transitions to many states lying above the first ionization potential were observed for the first time. Many of these bands have been assigned to Rydberg series converging to higher ionization potentials. The trends observed in the measured transition energies for the π → π*, N → T, and N → V as well as the π → 3s excitation are discussed and compared to those observed in the methyl- and fluoro- substituted ethylenes.
The electron energy-loss spectra of the group VIb transition metal hexacarbonyls have been studied in the 0 eV to 15 eV region. The differential cross sections were obtained for several features in the 3-7 eV energy-loss region. The symmetry-forbidden nature of the 1A1g → 1A1g, 2t2g(π) → 3t2g(π*) transition in these compounds was confirmed by the high-energy, low-angle behavior of their relative intensities. Several low lying transitions have been assigned to ligand field transitions on the basis of the energy and angular behavior of the differential cross sections for these transitions. No transitions which could clearly be assigned to singlet → triplet excitations involving metal orbitals were located. A number of states lying above the first ionization potential have been observed for the first time. A number of features in the 6-14 eV energy-loss region of the spectra of these compounds correspond quite well to those observed in free CO.
A number of exploratory studies have been performed. The π → π*, N → T, singlet → triplet excitation has been located in vinyl bromide at 4.05 eV. We have also observed this transition at approximately 3.8 eV in a cis-/trans- mixture of the 1,2-dibromoethylenes. The low-angle spectrum of iron pentacarbonyl was measured over the energy-loss region extending from 2-12 eV. A number of transitions of 8 eV or greater excitation energy were observed for the first time. Cyclopropane was also studied at both high and low angles but no clear evidence for any spin- forbidden transitions was found. The electron-impact spectrum of the methyl radical resulting from the pyrolysis of tetramethyl tin was obtained at 100 eV incident energy and at 0° scattering angle. Transitions observed at 5.70 eV and 8.30 eV agree well with the previous optical results. In addition, a number of bands were observed in the 8-14 eV region which are most likely due to Rydberg transitions converging to the higher ionization potentials of this molecule. This is the first reported electron-impact spectrum of a polyatomic free radical.
Variable-angle photoelectron spectroscopic studies were performed on a series of three-membered-ring heterocyclic compounds. These compounds are of great interest due to their highly unusual structure. Photoelectron angular distributions using HeI radiation have been measured for the first time for ethylene oxide and ethyleneimine. The measured anisotropy parameters, β, along with those measured for cyclopropane were used to confirm the orbital correlations and photoelectron band assignments. No high values of β similar to those expected for alkene π orbitals were observed for the Walsh or Forster-Coulson-Moffit type orbitals.
Resumo:
Using density functional theory, we studied the fundamental steps of olefin polymerization for zwitterionic and cationic Group IV ansa-zirconocenes and a neutral ansa- yttrocene. Complexes [H2E(C5H4)2ZrMe]n (n = 0: E = BH2 (1), BF2 (2), AlH2(3); n = +: E = CH2(4), SiH2(5)) and H2Si(C5H4)2YMe were used as computational models. The largest differences among these three classes of compounds were the strength of olefin binding and the stability of the β-agostic alkyl intermediate towards β-hydrogen elimination. We investigated the effect of solvent on the reaction energetics for land 5. We found that in benzene the energetics became very similar except that a higher olefin insertion barrier was calculated for 1. The calculated anion affinity of [CH3BF3]- was weaker towards 1 than 5. The calculated olefin binding depended primarily on the charge of the ansa linker, and the olefin insertion barrier was found to decrease steadily in the following order: [H2C(C5H4)2ZrMe]+ > [F2B(C5H4)2ZrMe] ≈ [H2B(C5H4)2ZrMe] > [H2Si(C5H4)2ZrMe]+ > [H2Al(C5H4)2ZrMe].
We prepared ansa-zirconocene dicarbonyl complexes Me2ECp2Zr(CO)2 (E = Si, C), and t-butyl substituted complexes (t-BuCp)2Zr(CO)2, Me2E(t-BuCp)2Zr(CO)2 (E = Si, C), (Me2Si)2(t-BuCp)2Zr(CO)2 as well as analogous zirconocene complexes. Both the reduction potentials and carbonyl stretching frequencies follow the same order: Me2SiCp2ZrCl2> Me2CCp2ZrCl2> Cp2ZrCl2> (Me2Si)2Cp2ZrCl2. This ordering is a result of both the donating abilities of the cyclopentadienyl substituents and the orientation of the cyclopentadiene rings. Additionally, we prepared a series of analogous cationic zirconocene complexes [LZrOCMe3][MeB(C6F5)3] (L = CP2, Me2SiCp2, Me2CCP2, (Me2Si)2Cp2) and studied the kinetics of anion dissociation. We found that the enthalpy of anion dissociation increased from 10.3 kcal•mol-1 to 17.6 kcal•mol-1 as exposure of the zirconium center increased.
We also prepared series of zirconocene complexes bearing 2,2-dimethyl-2-sila-4-pentenyl substituents (and methyl-substituted olefin variants). Methide abstraction with B(C6F5) results in reversible coordination of the tethered olefin to the cationic zirconium center. The kinetics of olefin dissociation have been examined using NMR methods, and the effects of ligand variation for unlinked, singly [SiMe2]-linked and doubly [SiMe2]-linked bis(cyclopentadienyl) arrangements has been compared (ΔG‡ for olefin dissociation varies from 12.8 to 15.6 kcal•mol-1). Methide abstraction from 1,2-(SiMe2)2(η5-C5H3)2Zr(CH3)-(CH2CMe2CH2CH = CH2) results in rapid β-allyl elimination with loss of isobutene yielding the allyl cation [{1,2-(SiMe2)2(η5-C5H3)2Zr(η3-CH2CH=CH2)]+.
Resumo:
This thesis describes the preparation, characterization, and application of welldefined single-component group ten salicylaldimine complexes for the polymerization of ethylene to high molecular weight materials as well as the copolymerization of ethylene and functionalized olefins. After an initial introduction to the field, Chapter 2 describes the preparation of PPh3 complexes that contain a series of modified salicylaldimine and naphthaldimine ligands. Such complexes were activated for polymerization by the addition of cocatalysts such as Ni(COD)2 or B(C6F5)3. As the steric demand of the ligand set increased-the molecular weight, polymerization activity, and lifetime of the catalyst was observed to increase. In fact, complexes containing "bulky" ligands, such as the [Anthr,HSal] ligand (2.5), were found to be highly-active single component complexes for the polymerization of ethylene. Model hydrido compound were prepared-allowing for a better understanding of both the mechanism of polymerization and one mode of decomposition.
Chapter 3 describes the effect which additives play on neutral NiII polymerization catalysts such as 2.5. The addition of excess ethers, esters, ketones, anhydrides, alcohols, and water do not deactivate the catalysts for polymerization. However, the addition of excess acid, thiols, and phosphines was observed to shut-down catalysis. Since excess phosphine was found to inhibit catalysis, "phosphine-free" complexes, such as the acetonittile complex (3.26), were prepared. The acetonitrile complex was found to be the most active neutral polymerization catalyst prepared to date.
Chapter 4 outlines the use of catalyst 2.5 and 3.26 for the preparation of linear functionalized copolymers containing alcohols, esters, anhydrides, and ethers. Copolymers can be prepared with γ-functionalized-α-olefins, functionalized norbornenes, and functionalized tricyclononenes, with up to 30 mol% comonomer incorporation.
Chapter 5 outlines the preparation of a series of PtII alkyl/olefin salicylaldimine complexes which serve as models for the active species in the NiII-catalyzed polymerization process. Understanding the nature of the M-olefin interaction as a the electronic and steric properties of the salicylaldimine ligand is varied has allowed for a number of predictions about the design of future polymerization systems.
Resumo:
A series of Cs- and C1-symmetric doubly-linked ansa-metallocenes of the general formula {1,1'-SiMe2-2,2'-E-('ƞ5-C5H2-4-R1)-(ƞ5-C5H-3',5'-(CHMe2)2)}ZrC2 (E = SiMe2 (1), SiPh2 (2), SiMe2 -SiMe2 (3); R1 = H, CHMe2, C5H9, C6H11, C6H5) has been prepared. When activated by methylaluminoxane, these are active propylene polymerization catalysts. 1 and 2 produce syndiotactic polypropylenes, and 3 produces isotactic polypropylenes. Site epimerization is the major pathway for stereoerror formation for 1 and 2. In addition, the polymer chain has slightly stronger steric interaction with the diphenylsilylene linker than with the dimethylsilylene linker. This results in more frequent site epimerization and reduced syndiospecificity for 2 compared to 1.
C1-Symmetric ansa-zirconocenes [1,1 '-SiMe2-(C5H4)-(3-R-C5H3)]ZrCl2 (4), [1,1 '-SiMe2-(C5H4)-(2,4-R2-C5H2)]ZrCl2 (5) and [1,1 '-SiMe2-2,2 '-(SiMe2-SiMe2)-(C5H3)-( 4-R-C5H2)]ZrCl2 (6) have been prepared to probe the origin of isospecificity in 3. While 4 and 3 produce polymers with similar isospecificity, 5 and 6 give mostly hemi-isotactic-like polymers. It is proposed that the facile site epimerization via an associative pathway allows rapid equilibration of the polymer chain between the isospecific and aspecific insertion sites. This results in more frequent insertion from the isospecific site, which has a lower kinetic barrier for chain propagation. On the other hand, site epimerization for 5 and 6 is slow. This leads to mostly alternating insertion from the isospecific and aspecific sites, and consequently, a hemi-isotactic-like polymers. In comparison, site epimerization is even slower for 3, but enchainment from the aspecific site has an extremely high kinetic barrier for monomer coordination. Therefore, enchainment occurs preferentially from the isospecific site to produce isotactic polymers.
A series of cationic complexes [(ArN=CR-CR=NAr)PtMe(L)]+[BF4]+ (Ar = aryl; R = H, CH3; L = water, trifluoroethanol) has been prepared. They react smoothly with benzene at approximately room temperature in trifluoroethanol solvent to yield methane and the corresponding phenyl Pt(II) cations, via Pt(IV)-methyl-phenyl-hydride intermediates. The reaction products of methyl-substituted benzenes suggest an inherent reactivity preference for aromatic over benzylic C-H bond activation, which can however be overridden by steric effects. For the reaction of benzene with cationic Pt(II) complexes, in which the diimine ligands bear 3,5-disubstituted aryl groups at the nitrogen atoms, the rate-determining step is C-H bond activation. For the more sterically crowded analogs with 2,6-dimethyl-substituted aryl groups, benzene coordination becomes rate-determining. The more electron-rich the ligand, as reflected by the CO stretching frequency in the IR spectrum of the corresponding cationic carbonyl complex, the faster the rate of C-H bond activation. This finding, however, does not reflect the actual C-H bond activation process, but rather reflects only the relative ease of solvent molecules displacing water molecules to initiate the reaction. That is, the change in rates is mostly due to a ground state effect. Several lines of evidence suggest that associative substitution pathways operate to get the hydrocarbon substrate into, and out of, the coordination sphere; i.e., that benzene substitution proceeds by a solvent- (TFE-) assisted associative pathway.
Resumo:
Evidence for the stereochemical isomerization of a variety of ansa metallocene compounds is presented. For the scandocene allyl derivatives described here, we have established that the process is promoted by a variety of salts in both ether and hydrocarbon solvents and is not accelerated by light. A plausible mechanism based on an earlier proposal by Marks, et al., is offered as an explanation of this process. It involves coordination of anions and/or donor solvents to the metal center with cation assistance to encourage metalcyclopentadienyl bond heterolysis, rotation about the Si-Cp bond of the detached cyclopentadienide and recoordination of the opposite face. Our observations in some cases of thermodynamic racemic:meso ratios under the reaction conditions commonly used for the synthesis of the metallocene chlorides suggests that the interchange is faster than metallation, such that the composition of the reaction mixture is determined by thermodynamic, not kinetic, control in these cases.
Two new ansa-scandocene alkenyl compounds react with olefins resulting in the formation of η3-allyl complexes. Kinetics and labeling experiments indicate a tuck-in intermediate on the reaction pathway; in this intermediate the metal is bound to the carbon adjacent to the silyllinker in the rear of the metallocene wedge. In contrast, reaction of permethylscandocene alkenyl compounds with olefins results, almost exclusively, in vinylic C-H bond activation. It is proposed that relieving transition state steric interactions between the cyclopentadienyl rings and the olefin by either linking the rings together or using a larger lanthanide metal may allow for olefin coordination, stabilizing the transition state for allylic σ-bond metathesis.
A selectively isotopically labeled propylene, CH2CD(13CH3), was synthesized and its polymerization was carried out at low concentration in toluene solution using isospecific metallocene catalysts. Analysis of the NMR spectra (13C, 1H, and 2H) of the resultant polymers revealed that the production of stereoerrors through chain epimerization proceeds exclusively by the tertiaryalkyl mechanism. Additionally, enantiofacial inversion of the terminally unsaturated polymer chain occurs by a non-dissociative process. The implications of these results on the mechanism of olefin polymerization with these catalysts is discussed.