2 resultados para Urban space production

em CaltechTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The reaction γ + p p + π+ + π- has been studied for photon energies between 800 and 1500 MeV and for dipion masses between 510 and 900 MeV. The bremsstrahlung beam from the Caltech synchrotron was passed through a liquid hydrogen target and spark chambers were used to detect the three final particles. In addition, the proton energy was determined by a range measurement. Approximately 40,000 photographs were taken, yielding 3018 acceptable events. The results were fit to an incoherent combination of the N*(1238) resonance, the po (750) resonance, and three-body phase space, with various models being tried for po production. The total cross section for po production is consistent with previous experiments. However, the angular dependence of the cross section is slightly more peaked in the forward direction, and the ratio of po production to phase space production is larger than previously observed.

However, since this experiment was only sensitive to the production angles cos θ cm ≥ .75, statistical fluctuations and/or an anisotropic distribution of background production have a severe influence on the po to background ratio. Of the po models tested, the results prefer po production by the one pion exchange mechanism with a very steep form factor dependence. The values of the mass and width of the po found here are consistent with previous experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The propagation of cosmic rays through interstellar space has been investigated with the view of determining what particles can traverse astronomical distances without serious loss of energy. The principal method of loss of energy of high energy particles is by interaction with radiation. It is found that high energy (1013-1018ev) electrons drop to one-tenth their energy in 108 light years in the radiation density in the galaxy and that protons are not significantly affected in this distance. The origin of the cosmic rays is not known so that various hypotheses as to their origin are examined. If the source is near a star it is found that the interaction of electrons and photons with the stellar radiation field and the interaction of electrons with the stellar magnetic field limit the amount of energy which these particles can carry away from the star. However, the interaction is not strong enough to affect the energy of protons or light nuclei appreciably. The chief uncertainty in the results is due to the possible existence of general galactic magnetic field. The main conclusion reached is that if there is a general galactic magnetic field, then the primary spectrum has very few photons, only low energy (˂ 1013 ev) electrons and the higher energy particles are primarily protons regardless of the source mechanism, and if there is no general galactic magnetic field, then the source of cosmic rays accelerates mainly protons and the present rate of production is much less than that in the past.