4 resultados para Urban League of Greater Muskegon.
em CaltechTHESIS
Resumo:
This thesis consists of three papers studying the relationship between democratic reform, expenditure on sanitation public goods and mortality in Britain in the second half of the nineteenth century. During this period decisions over spending on critical public goods such as water supply and sewer systems were made by locally elected town councils, leading to extensive variation in the level of spending across the country. This dissertation uses new historical data to examine the political factors determining that variation, and the consequences for mortality rates.
The first substantive chapter describes the spread of government sanitation expenditure, and analyzes the factors that determined towns' willingness to invest. The results show the importance of towns' financial constraints, both in terms of the available tax base and access to borrowing, in limiting the level of expenditure. This suggests that greater involvement by Westminster could have been very effective in expediting sanitary investment. There is little evidence, however, that democratic reform was an important driver of greater expenditure.
Chapter 3 analyzes the effect of extending voting rights to the poor on government public goods spending. A simple model predicts that the rich and the poor will desire lower levels of public goods expenditure than the middle class, and so extensions of the right to vote to the poor will be associated with lower spending. This prediction is tested using plausibly exogenous variation in the extent of the franchise. The results strongly support the theoretical prediction: expenditure increased following relatively small extensions of the franchise, but fell once more than approximately 50% of the adult male population held the right to vote.
Chapter 4 tests whether the sanitary expenditure was effective in combating the high mortality rates following the Industrial Revolution. The results show that increases in urban expenditure on sanitation-water supply, sewer systems and streets-was extremely effective in reducing mortality from cholera and diarrhea.
Resumo:
The asymmetric synthesis of quaternary stereocenters remains a challenging problem in organic synthesis. Past work from the Stoltz laboratory has resulted in methodology to install quaternary stereocenters α- or γ- to carbonyl compounds. Thus, the asymmetric synthesis of β-quaternary stereocenters was a desirable objective, and was accomplished by engineering the palladium-catalyzed addition of arylmetal organometallic reagents to α,β-unsaturated conjugate acceptors.
Herein, we described the rational design of a palladium-catalyzed conjugate addition reactions utilizing a catalyst derived from palladium(II) trifluoroacetate and pyridinooxazole ligands. This reaction is highly tolerant of protic solvents and oxygen atmosphere, making it a practical and operationally simple reaction. The mild conditions facilitate a remarkably high functional group tolerance, including carbonyls, halogens, and fluorinated functional groups. Furthermore, the reaction catalyzed conjugate additions with high enantioselectivity with conjugate acceptors of 5-, 6-, and 7-membered ring sizes. Extension of the methodology toward the asymmetric synthesis of flavanone products is presented, as well.
A computational and experimental investigation into the reaction mechanism provided a stereochemical model for enantioinduction, whereby the α-methylene protons adjacent the enone carbonyl clashes with the tert-butyl groups of the chiral ligand. Additionally, it was found that the addition of water and ammonium hexafluorophosphate significantly increases the reaction rate without sacrificing enantioselectivity. The synergistic effects of these additives allowed for the reaction to proceed at a lower temperature, and thus facilitated expansion of the substrate scope to sensitive functional groups such as protic amides and aryl bromides. Investigations into a scale-up synthesis of the chiral ligand (S)-tert-butylPyOx are also presented. This three-step synthetic route allowed for synthesis of the target compound of greater than 10 g scale.
Finally, the application of the newly developed conjugate addition reaction toward the synthesis of the taiwaniaquinoid class of terpenoid natural products is discussed. The conjugate addition reaction formed the key benzylic quaternary stereocenter in high enantioselectivity, joining together the majority of the carbons in the taiwaniaquinoid scaffold. Efforts toward the synthesis of the B-ring are presented.
Resumo:
Some of the metallogenic provinces of the southwestern United States and northern Mexico are defined by the geographic distribution of trace elements in the primary sulfide minerals chalcopyrite and sphalerite. The elements investigated include antimony, arsenic, bismuth, cadmium, cobalt, gallium, germanium, indium, manganese, molybdenum, nickel, silver, tellurium, thallium, and tin. Of these elements, cobalt, gallium, germanium, indium, nickel, silver, and tin exhibit the best defined geographic distribution.
The data indicate that chalcopyrite is the preferred host for tin and perhaps molybdenum; sphalerite is the preferred host for cadmium, gallium, germanium, indium, and manganese; galena is the preferred host for antimony, bismuth, silver, tellurium, and thallium; and pyrite is the preferred host for cobalt, nickel, and perhaps arsenic. With respect to the two minerals chalcopyrite and sphalerite, antimony, arsenic, molybdenum, nickel, silver, and tin prefer chalcopyrite; and bismuth, cadmium, cobalt, gallium, germanium, indium, manganese, and thallium prefer sphalerite. This distribution probably is the result of the interaction of several factors, among which are these: the various radii of the elements, the association due to chemical similarities of the major and trace elements, and the degree of ionic versus covalent and metallic character of the metal-sulfur bonds in chalcopyrite and sphalerite. The type of deposit, according to a temperature classification, appears to be of minor importance in determining the trace element content of chalcopyrite and sphalerite.
A preliminary investigation of large single crystals of sphalerite and chalcopyrite indicates that the distribution within a single crystal of some elements such as cadmium in sphalerite and indium and silver in chalcopyrite is relatively uniform, whereas the distribution of some other elements such as cobalt and manganese in sphalerite is somewhat less uniform and the distribution of tin in sphalerite is extremely erratic. The variations in trace element content probably are due largely to variations in the composition of the fluids during the growth of the crystals, but the erratic behavior of tin in sphalerite perhaps is related to the presence of numerous cavities and inclusions in the crystal studied.
Maps of the geographic distribution of trace elements in chalcopyrite and sphalerite exhibit three main belts of greater than average trace element content, which are called the Eastern, Central, and Western belts. These belts are consistent in trend and position with a beltlike distribution of copper, gold, lead, zinc, silver, and tungsten deposits and with most of the major tectonic features. However, there appear to be no definite time relationships, for as many as four metallogenic epochs, from Precambrian to late Tertiary, are represented by ore deposits within the Central belt.
The evidence suggests that the beltlike features have a deep seated origin, perhaps in the sub-crust or outer parts of the mantle, and that the deposits within each belt might be genetically related through a beltlike compositional heterogeneity in the source regions of the ores. Hence, the belts are regarded as metallogenic provinces.
Resumo:
Synthetic biological systems promise to combine the spectacular diversity of biological functionality with engineering principles to design new life to address many pressing needs. As these engineered systems advance in sophistication, there is ever-greater need for customizable, situation-specific expression of desired genes. However, existing gene control platforms are generally not modular, or do not display performance requirements required for robust phenotypic responses to input signals. This work expands the capabilities of eukaryotic gene control in two important directions.
For development of greater modularity, we extend the use of synthetic self-cleaving ribozyme switches to detect changes in input protein levels and convey that information into programmed gene expression in eukaryotic cells. We demonstrate both up- and down-regulation of levels of an output transgene by more than 4-fold in response to rising input protein levels, with maximal output gene expression approaching the highest levels observed in yeast. In vitro experiments demonstrate protein-dependent ribozyme activity modulation. We further demonstrate the platform in mammalian cells. Our switch devices do not depend on special input protein activity, and can be tailored to respond to any input protein to which a suitable RNA aptamer can be developed. This platform can potentially be employed to regulate the expression of any transgene or any endogenous gene by 3’ UTR replacement, allowing for more complex cell state-specific reprogramming.
We also address an important concern with ribozyme switches, and riboswitch performance in general, their dynamic range. While riboswitches have generally allowed for versatile and modular regulation, so far their dynamic ranges of output gene modulation have been modest, generally at most 10-fold. We address this shortcoming by developing a modular genetic amplifier for near-digital control of eukaryotic gene expression. We combine ribozyme switch-mediated regulation of a synthetic TF with TF-mediated regulation of an output gene. The amplifier platform allows for as much as 20-fold regulation of output gene expression in response to input signal, with maximal expression approaching the highest levels observed in yeast, yet being tunable to intermediate and lower expression levels. EC50 values are more than 4 times lower than in previously best-performing non-amplifier ribozyme switches. The system design retains the modular-input architecture of the ribozyme switch platform, and the near-digital dynamic ranges of TF-based gene control.
Together, these developments suggest great potential for the wide applicability of these platforms for better-performing eukaryotic gene regulation, and more sophisticated, customizable reprogramming of cellular activity.