6 resultados para Underground distribution system

em CaltechTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.

Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.

The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.

This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.

Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.

Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to identify new molecules that might play a role in regional specification of the nervous system, we generated and characterized monoclonal antibodies (mAbs) that have positionally-restricted labeling patterns.

The FORSE-1 mAb was generated using a strategy designed to produce mAbs against neuronal cell surface antigens that might be regulated by regionally-restricted transcription factors in the developing central nervous system (CNS). FORSE-1 staining is enriched in the forebrain as compared to the rest of the CNS until E18. Between E11.5-E13.5, only certain areas of the forebrain are labeled. There is also a dorsoventrally-restricted region of labeling in the hindbrain and spinal cord. The mAb labels a large proteoglycan-like cell-surface antigen (>200 kD). The labeling pattern of FORSE-1 is conserved in various mammals and in chick.

To determine whether the FORSE-1 labeling pattern is similar to that of known transcription factors, the expression of BF-1 and Dlx-2 was compared with FORSE-1. There is a striking overlap between BF-1 and FORSE-1 in the telencephalon. In contrast, FORSE-1 and Dlx-2 have very different patterns of expression in the forebrain, suggesting that regulation by Dlx-2 alone cannot explain the distribution of FORSE-1. They do, however, share some sharp boundaries in the diencephalon. In addition, FORSE-1 identifies some previously unknown boundaries in the developing forebrain. Thus, FORSE-1 is a new cell surface marker that can be used to subdivide the embryonic forebrain into regions smaller than previously described, providing further complexity necessary for developmental patterning.

I also studied the expression of the cell surface protein CD9 in the developing and adult rat nervous system. CD9 is implicated in intercellular signaling and cell adhesion in the hematopoetic system. In the nervous system, CD9 may perform similar functions in early sympathetic ganglia, chromaffin cells, and motor neurons, all of which express the protein. The presence of CD9 on the surfaces of Schwann cells and axons at the appropriate time may allow the protein to participate in the cellular interactions involved in myelination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.

Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.

The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.

Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.

The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.