4 resultados para Tunable device
em CaltechTHESIS
Resumo:
Heparan sulfate (HS) glycosaminoglycans participate in critical biological processes by modulating the activity of a diverse set of protein binding partners. Such proteins include all known members of the chemokine superfamily, which are thought to guide the migration of distinct subsets of immune cells through their interactions with HS proteoglycans on endothelial cell surfaces. Animal-derived heparin polysaccharides have been shown to reduce inflammation levels through the inhibition of HS-chemokine interactions; however, the clinical usage of heparin as an anti-inflammatory drug is hampered by its anticoagulant activity and potential risk for side effects, such as heparin-induced thrombocytopenia (HIT).
Here, we describe an expedient, divergent synthesis to prepare defined glycomimetics of HS that recapitulate the macromolecular structure and biological activity of natural HS glycosaminoglycans. Our synthetic approach uses a core disaccharide precursor to generate a library of four differentially sulfated polymers. We show that a trisulfated glycopolymer antagonizes the chemotactic activities of pro-inflammatory chemokine RANTES with similar potency as heparin polysaccharide, without potentiating the anticoagulant activities of antithrombin III. The same glycopolymer also inhibited the homeostatic chemokine SDF-1 with significantly more efficacy than heparin. Our work offers a general strategy for modulating chemokines and dissecting the pleiotropic functions of HS/heparin through the presentation of defined sulfation motifs within multivalent polymeric scaffolds.
Resumo:
A recirculating charge-coupled device structure has been devised. Entrance and exit gates allow a signal to be admitted, recirculated a given number of times, and then examined. In this way a small device permits simulation of a very long shift register without passing the signal through input and output diffusions. An oscilloscope motion picture demonstrating degradation of an actual circulating signal has been made. The performance of the device in simulating degradation of a signal by a very long shift register is well fit by a simple model based on transfer inefficiency.
Electrical properties of the mercury selenide on n-type chemically-cleaned silicon Schottky barrier have been studied. Barrier heights measured were 0.96 volts for the photoresponse technique and 0.90 volts for the current-voltage technique. These are the highest barriers yet reported on n-type silicon.
Resumo:
We investigated four unique methods for achieving scalable, deterministic integration of quantum emitters into ultra-high Q{V photonic crystal cavities, including selective area heteroepitaxy, engineered photoemission from silicon nanostructures, wafer bonding and dimensional reduction of III-V quantum wells, and cavity-enhanced optical trapping. In these areas, we were able to demonstrate site-selective heteroepitaxy, size-tunable photoluminescence from silicon nanostructures, Purcell modification of QW emission spectra, and limits of cavity-enhanced optical trapping designs which exceed any reports in the literature and suggest the feasibility of capturing- and detecting nanostructures with dimensions below 10 nm. In addition to process scalability and the requirement for achieving accurate spectral- and spatial overlap between the emitter and cavity, these techniques paid specific attention to the ability to separate the cavity and emitter material systems in order to allow optimal selection of these independently, and eventually enable monolithic integration with other photonic and electronic circuitry.
We also developed an analytic photonic crystal design process yielding optimized cavity tapers with minimal computational effort, and reported on a general cavity modification which exhibits improved fabrication tolerance by relying exclusively on positional- rather than dimensional tapering. We compared several experimental coupling techniques for device characterization. Significant efforts were devoted to optimizing cavity fabrication, including the use of atomic layer deposition to improve surface quality, exploration into factors affecting the design fracturing, and automated analysis of SEM images. Using optimized fabrication procedures, we experimentally demonstrated 1D photonic crystal nanobeam cavities exhibiting the highest Q/V reported on substrate. Finally, we analyzed the bistable behavior of the devices to quantify the nonlinear optical response of our cavities.
Resumo:
The sun has the potential to power the Earth's total energy needs, but electricity from solar power still constitutes an extremely small fraction of our power generation because of its high cost relative to traditional energy sources. Therefore, the cost of solar must be reduced to realize a more sustainable future. This can be achieved by significantly increasing the efficiency of modules that convert solar radiation to electricity. In this thesis, we consider several strategies to improve the device and photonic design of solar modules to achieve record, ultrahigh (> 50%) solar module efficiencies. First, we investigate the potential of a new passivation treatment, trioctylphosphine sulfide, to increase the performance of small GaAs solar cells for cheaper and more durable modules. We show that small cells (mm2), which currently have a significant efficiency decrease (~ 5%) compared to larger cells (cm2) because small cells have a higher fraction of recombination-active surface from the sidewalls, can achieve significantly higher efficiencies with effective passivation of the sidewalls. We experimentally validate the passivation qualities of treatment by trioctylphosphine sulfide (TOP:S) through four independent studies and show that this facile treatment can enable efficient small devices. Then, we discuss our efforts toward the design and prototyping of a spectrum-splitting module that employs optical elements to divide the incident spectrum into different color bands, which allows for higher efficiencies than traditional methods. We present a design, the polyhedral specular reflector, that has the potential for > 50% module efficiencies even with realistic losses from combined optics, cell, and electrical models. Prototyping efforts of one of these designs using glass concentrators yields an optical module whose combined spectrum-splitting and concentration should correspond to a record module efficiency of 42%. Finally, we consider how the manipulation of radiatively emitted photons from subcells in multijunction architectures can be used to achieve even higher efficiencies than previously thought, inspiring both optimization of incident and radiatively emitted photons for future high efficiency designs. In this thesis work, we explore novel device and photonic designs that represent a significant departure from current solar cell manufacturing techniques and ultimately show the potential for much higher solar cell efficiencies.