26 resultados para Triple Frequency Combination

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the design, construction, and applications of the optoelectronic swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed around a swept-frequency (chirped) semiconductor laser (SCL) to control its instantaneous optical frequency, such that the chirp characteristics are determined solely by a reference electronic oscillator. The resultant system generates precisely controlled optical frequency sweeps. In particular, we focus on linear chirps because of their numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wavelengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion procedure that enables SFL operation at very high chirp rates, up to 10^16 Hz/sec. We describe commercialization efforts and implementation of the predistortion algorithm in a stand-alone embedded environment, undertaken as part of our collaboration with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW) ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry, in which the frequency sweeps of multiple SFLs are "stitched" together in order to increase the optical bandwidth, and hence improve the axial resolution, of an FMCW ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which enables MS-FMCW ranging without additional signal processing. The culmination of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical bandwidth of 2 THz, and a free-space axial resolution of 75 microns.

We describe our work on the tomographic imaging camera (TomICam), a 3-D imaging system based on FMCW ranging that features non-mechanical acquisition of transverse pixels. Our approach uses a combination of electronically tuned optical sources and low-cost full-field detector arrays, completely eliminating the need for moving parts traditionally employed in 3-D imaging. We describe the basic TomICam principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept experiment. We also discuss the application of compressive sensing (CS) to the TomICam platform, and perform a series of numerical simulations. These simulations show that tenfold compression is feasible in CS TomICam, which effectively improves the volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables non-mechanical compensation of optical delays using acousto-optic frequency shifters, and its high chirp rate simultaneously increases the stimulated Brillouin scattering (SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier coherent-combining system. We use a chirp rate of 5*10^14 Hz/sec to increase the amplifier SBS threshold threefold, when compared to a single-frequency seed. We demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-doped fiber amplifier channels, achieving temporal phase noise levels corresponding to interferometric fringe visibilities exceeding 98%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells in the lateral intraparietal cortex (LIP) of rhesus macaques respond vigorously and in spatially-tuned fashion to briefly memorized visual stimuli. Responses to stimulus presentation, memory maintenance, and task completion are seen, in varying combination from neuron to neuron. To help elucidate this functional segmentation a new system for simultaneous recording from multiple neighboring neurons was developed. The two parts of this dissertation discuss the technical achievements and scientific discoveries, respectively.

Technology. Simultanous recordings from multiple neighboring neurons were made with four-wire bundle electrodes, or tetrodes, which were adapted to the awake behaving primate preparation. Signals from these electrodes were partitionable into a background process with a 1/f-like spectrum and foreground spiking activity spanning 300-6000 Hz. Continuous voltage recordings were sorted into spike trains using a state-of-the-art clustering algorithm, producing a mean of 3 cells per site. The algorithm classified 96% of spikes correctly when tetrode recordings were confirmed with simultaneous intracellular signals. Recording locations were verified with a new technique that creates electrolytic lesions visible in magnetic resonance imaging, eliminating the need for histological processing. In anticipation of future multi-tetrode work, the chronic chamber microdrive, a device for long-term tetrode delivery, was developed.

Science. Simultaneously recorded neighboring LIP neurons were found to have similar preferred targets in the memory saccade paradigm, but dissimilar peristimulus time histograms, PSTH). A majority of neighboring cell pairs had a difference in preferred directions of under 45° while the trial time of maximal response showed a broader distribution, suggesting homogeneity of tuning with het erogeneity of function. A continuum of response characteristics was present, rather than a set of specific response types; however, a mapping experiment suggests this may be because a given cell's PSTH changes shape as well as amplitude through the response field. Spike train autocovariance was tuned over target and changed through trial epoch, suggesting different mechanisms during memory versus background periods. Mean frequency-domain spike-to-spike coherence was concentrated below 50 Hz with a significant maximum of 0.08; mean time-domain coherence had a narrow peak in the range ±10 ms with a significant maximum of 0.03. Time-domain coherence was found to be untuned for short lags (10 ms), but significantly tuned at larger lags (50 ms).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.

A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.

In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.

A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time-domain spectrometer for use in the terahertz (THz) spectral range was designed and constructed. Due to there being few existing methods of generating and detecting THz radiation, the spectrometer is expected to have vast applications to solid, liquid, and gas phase samples. In particular, knowledge of complex organic chemistry and chemical abundances in the interstellar medium (ISM) can be obtained when compared to astronomical data. The THz spectral region is of particular interest due to reduced line density when compared to the millimeter wave spectrum, the existence of high resolution observatories, and potentially strong transitions resulting from the lowest-lying vibrational modes of large molecules.

The heart of the THz time-domain spectrometer (THz-TDS) is the ultrafast laser. Due to the femtosecond duration of ultrafast laser pulses and an energy-time uncertainty relationship, the pulses typically have a several-THz bandwidth. By various means of optical rectification, the optical pulse carrier envelope shape, i.e. intensity-time profile, can be transferred to the phase of the resulting THz pulse. As a consequence, optical pump-THz probe spectroscopy is readily achieved, as was demonstrated in studies of dye-sensitized TiO2, as discussed in chapter 4. Detection of the terahertz radiation is commonly based on electro-optic sampling and provides full phase information. This allows for accurate determination of both the real and imaginary index of refraction, the so-called optical constants, without additional analysis. A suite of amino acids and sugars, all of which have been found in meteorites, were studied in crystalline form embedded in a polyethylene matrix. As the temperature was varied between 10 and 310 K, various strong vibrational modes were found to shift in spectral intensity and frequency. Such modes can be attributed to intramolecular, intermolecular, or phonon modes, or to some combination of the three.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligonucleotide-directed triple helix formation is one of the most versatile methods for the sequence specific recognition of double helical DNA. Chapter 2 describes affinity cleaving experiments carried out to assess the recognition potential for purine-rich oligonucleotides via the formation of triple helices. Purine-rich oligodeoxyribonucleotides were shown to bind specifically to purine tracts of double helical DNA in the major groove antiparallel to the purine strand of the duplex. Specificity was derived from the formation of reverse Hoogsteen G•GC, A•AT and T•AT triplets and binding was limited to mostly purine tracts. This triple helical structure was stabilized by multivalent cations, destabilized by high concentrations of monovalent cations and was insensitive to pH. A single mismatched base triplet was shown to destabilize a 15 mer triple helix by 1.0 kcal/mole at 25°C. In addition, stability appeared to be correlated to the number of G•GC triplets formed in the triple helix. This structure provides an additional framework as a basis for the design of new sequence specific DNA binding molecules.

In work described in Chapter 3, the triplet specificities and required strand orientations of two classes of DNA triple helices were combined to target double helical sequences containing all four base pairs by alternate strand triple helix formation. This allowed for the use of oligonucleotides containing only natural 3'-5' phosphodiester linkages to simultaneously bind both strands of double helical DNA in the major groove. The stabilities and structures of these alternate strand triple helices depended on whether the binding site sequence was 5'-(purine)_m (pyrimidine)_n-3' or 5'- (pyrimidine)_m (purine)_n-3'.

In Chapter 4, the ability of oligonucleotide-cerium(III) chelates to direct the transesterfication of RNA was investigated. Procedures were developed for the modification of DNA and RNA oligonucleotides with a hexadentate Schiff-base macrocyclic cerium(III) complex. In addition, oligoribonucleotides modified by covalent attachment of the metal complex through two different linker structures were prepared. The ability of these structures to direct transesterification to specific RNA phosphodiesters was assessed by gel electrophoresis. No reproducible cleavage of the RNA strand consistent with transesterification could be detected in any of these experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in optical techniques have enabled many breakthroughs in biology and medicine. However, light scattering by biological tissues remains a great obstacle, restricting the use of optical methods to thin ex vivo sections or superficial layers in vivo. In this thesis, we present two related methods that overcome the optical depth limit—digital time reversal of ultrasound encoded light (digital TRUE) and time reversal of variance-encoded light (TROVE). These two techniques share the same principle of using acousto-optic beacons for time reversal optical focusing within highly scattering media, like biological tissues. Ultrasound, unlike light, is not significantly scattered in soft biological tissues, allowing for ultrasound focusing. In addition, a fraction of the scattered optical wavefront that passes through the ultrasound focus gets frequency-shifted via the acousto-optic effect, essentially creating a virtual source of frequency-shifted light within the tissue. The scattered ultrasound-tagged wavefront can be selectively measured outside the tissue and time-reversed to converge at the location of the ultrasound focus, enabling optical focusing within deep tissues. In digital TRUE, we time reverse ultrasound-tagged light with an optoelectronic time reversal device (the digital optical phase conjugate mirror, DOPC). The use of the DOPC enables high optical gain, allowing for high intensity optical focusing and focal fluorescence imaging in thick tissues at a lateral resolution of 36 µm by 52 µm. The resolution of the TRUE approach is fundamentally limited to that of the wavelength of ultrasound. The ultrasound focus (~ tens of microns wide) usually contains hundreds to thousands of optical modes, such that the scattered wavefront measured is a linear combination of the contributions of all these optical modes. In TROVE, we make use of our ability to digitally record, analyze and manipulate the scattered wavefront to demix the contributions of these spatial modes using variance encoding. In essence, we encode each spatial mode inside the scattering sample with a unique variance, allowing us to computationally derive the time reversal wavefront that corresponds to a single optical mode. In doing so, we uncouple the system resolution from the size of the ultrasound focus, demonstrating optical focusing and imaging between highly diffusing samples at an unprecedented, speckle-scale lateral resolution of ~ 5 µm. Our methods open up the possibility of fully exploiting the prowess and versatility of biomedical optics in deep tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vulval differentiation in C. elegans is mediated by an Epidermal growth factor (EGF)- EGF receptor (EGFR) signaling pathway. I have cloned unc-101, a negative regulator of vulval differentiation of the nematode C. elegans. unc-101 encodes a homolog of AP47, the medium chain of the trans-Golgi clathrin-associated protein complex. This identity was confirmed by cloning and comparing sequence of a C. elegans homolog of AP50, the medium chain of the plasma membrane clathrin-associated protein complex. I provided the first genetic evidence that the trans-Golgi clathrin-coated vesicles are involved in regulation of an EGF signaling pathway. Most of the unc-101 alleles are deletions or nonsense mutations, suggesting that these alleles severely reduce the unc-101 activity. A hybrid gene that contains parts of unc-101 and mouse AP4 7 rescued at least two phenotypes of unc-101 mutations, the Unc and the suppression of vulvaless phenotype of let-23(sy1) mutation. Therefore, the functions of AP47 are conserved between nematodes and mammals.

unc-101 mutations can cause a greater than wild-type vulval differentiation in combination with certain mutations in sli-1, another negative regulator of the vulval induction pathway. A mutation in a new gene, rok-1, causes no defect by itself, but causes a greater than wild-type vulval differentiation in the presence of a sli-1 mutation. The unc-101; rok-1; sli-1 triple mutants display a greater extent of vulval differentiation than any double mutant combinations of unc-101, rok-1 and sli-1. Therefore, rok-1 locus defines another negative regulator of the vulval induction pathway.

I analyzed a second gene encoding an AP47 homolog in C. elegans. This gene, CEAP47, encodes a protein 72% identical to both unc-101 and mammalian AP47. A hybrid gene containing parts of unc-101 and CEAP47 sequences can rescue phenotypes of unc-101 mutants, indicating that UNC- 101 and CEAP47 proteins can be redundant if expressed in the same set of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we test the electroweak sector of the Standard Model of particle physics through the measurements of the cross section of the simultaneous production of the neutral weak boson Z and photon γ, and the limits on the anomalous Zγγ and ZZγ triple gauge couplings h3 and h4 with the Z decaying to leptons (electrons and muons). We analyze events collected in proton-proton collisions at center of mass energy of sqrt(s) = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarn. The analyzed events were recorded by the Compact Muon Solenoid detector at the Large Hadron Collider in 2011.

The production cross section has been measured for hard photons with transverse momentum greater than 15 GeV that are separated from the the final state leptons in the eta-phi plane by Delta R greater than 0.7, whose sum of the transverse energy of hadrons over the transverse energy of the photon in a cone around the photon with Delta R less than 0.3 is less than 0.5, and with the invariant mass of the dilepton system greater than 50 GeV. The measured cross section value is 5.33 +/- 0.08 (stat.) +/- 0.25 (syst.) +/- 0.12 (lumi.) picobarn. This is compatible with the Standard Model prediction that includes next-to-leading-order QCD contributions: 5.45 +/- 0.27 picobarn.

The measured 95 % confidence-level upper limits on the absolute values of the anomalous couplings h3 and h4 are 0.01 and 8.8E-5 for the Zγγ interactions, and, 8.6E-3 and 8.0E-5 for the ZZγ interactions. These values are also compatible with the Standard Model where they vanish in the tree-level approximation. They extend the sensitivity of the 2012 results from the ATLAS collaboration based on 1.02 inverse femtobarn of data by a factor of 2.4 to 3.1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic properties of a structure are a function of its physical properties, and changes in the physical properties of the structure, including the introduction of structural damage, can cause changes in its dynamic behavior. Structural health monitoring (SHM) and damage detection methods provide a means to assess the structural integrity and safety of a civil structure using measurements of its dynamic properties. In particular, these techniques enable a quick damage assessment following a seismic event. In this thesis, the application of high-frequency seismograms to damage detection in civil structures is investigated.

Two novel methods for SHM are developed and validated using small-scale experimental testing, existing structures in situ, and numerical testing. The first method is developed for pre-Northridge steel-moment-resisting frame buildings that are susceptible to weld fracture at beam-column connections. The method is based on using the response of a structure to a nondestructive force (i.e., a hammer blow) to approximate the response of the structure to a damage event (i.e., weld fracture). The method is applied to a small-scale experimental frame, where the impulse response functions of the frame are generated during an impact hammer test. The method is also applied to a numerical model of a steel frame, in which weld fracture is modeled as the tensile opening of a Mode I crack. Impulse response functions are experimentally obtained for a steel moment-resisting frame building in situ. Results indicate that while acceleration and velocity records generated by a damage event are best approximated by the acceleration and velocity records generated by a colocated hammer blow, the method may not be robust to noise. The method seems to be better suited for damage localization, where information such as arrival times and peak accelerations can also provide indication of the damage location. This is of significance for sparsely-instrumented civil structures.

The second SHM method is designed to extract features from high-frequency acceleration records that may indicate the presence of damage. As short-duration high-frequency signals (i.e., pulses) can be indicative of damage, this method relies on the identification and classification of pulses in the acceleration records. It is recommended that, in practice, the method be combined with a vibration-based method that can be used to estimate the loss of stiffness. Briefly, pulses observed in the acceleration time series when the structure is known to be in an undamaged state are compared with pulses observed when the structure is in a potentially damaged state. By comparing the pulse signatures from these two situations, changes in the high-frequency dynamic behavior of the structure can be identified, and damage signals can be extracted and subjected to further analysis. The method is successfully applied to a small-scale experimental shear beam that is dynamically excited at its base using a shake table and damaged by loosening a screw to create a moving part. Although the damage is aperiodic and nonlinear in nature, the damage signals are accurately identified, and the location of damage is determined using the amplitudes and arrival times of the damage signal. The method is also successfully applied to detect the occurrence of damage in a test bed data set provided by the Los Alamos National Laboratory, in which nonlinear damage is introduced into a small-scale steel frame by installing a bumper mechanism that inhibits the amount of motion between two floors. The method is successfully applied and is robust despite a low sampling rate, though false negatives (undetected damage signals) begin to occur at high levels of damage when the frequency of damage events increases. The method is also applied to acceleration data recorded on a damaged cable-stayed bridge in China, provided by the Center of Structural Monitoring and Control at the Harbin Institute of Technology. Acceleration records recorded after the date of damage show a clear increase in high-frequency short-duration pulses compared to those previously recorded. One undamage pulse and two damage pulses are identified from the data. The occurrence of the detected damage pulses is consistent with a progression of damage and matches the known chronology of damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancellation of interfering frequency-modulated (FM) signals is investigated with emphasis towards applications on the cellular telephone channel as an important example of a multiple access communications system. In order to fairly evaluate analog FM multiaccess systems with respect to more complex digital multiaccess systems, a serious attempt to mitigate interference in the FM systems must be made. Information-theoretic results in the field of interference channels are shown to motivate the estimation and subtraction of undesired interfering signals. This thesis briefly examines the relative optimality of the current FM techniques in known interference channels, before pursuing the estimation and subtracting of interfering FM signals.

The capture-effect phenomenon of FM reception is exploited to produce simple interference-cancelling receivers with a cross-coupled topology. The use of phase-locked loop receivers cross-coupled with amplitude-tracking loops to estimate the FM signals is explored. The theory and function of these cross-coupled phase-locked loop (CCPLL) interference cancellers are examined. New interference cancellers inspired by optimal estimation and the CCPLL topology are developed, resulting in simpler receivers than those in prior art. Signal acquisition and capture effects in these complex dynamical systems are explained using the relationship of the dynamical systems to adaptive noise cancellers.

FM interference-cancelling receivers are considered for increasing the frequency reuse in a cellular telephone system. Interference mitigation in the cellular environment is seen to require tracking of the desired signal during time intervals when it is not the strongest signal present. Use of interference cancelling in conjunction with dynamic frequency-allocation algorithms is viewed as a way of improving spectrum efficiency. Performance of interference cancellers indicates possibilities for greatly increased frequency reuse. The economics of receiver improvements in the cellular system is considered, including both the mobile subscriber equipment and the provider's tower (base station) equipment.

The thesis is divided into four major parts and a summary: the introduction, motivations for the use of interference cancellation, examination of the CCPLL interference canceller, and applications to the cellular channel. The parts are dependent on each other and are meant to be read as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes engineering applications that come from extending seismic networks into building structures. The proposed applications will benefit the data from the newly developed crowd-sourced seismic networks which are composed of low-cost accelerometers. An overview of the Community Seismic Network and the earthquake detection method are addressed. In the structural array components of crowd-sourced seismic networks, there may be instances in which a single seismometer is the only data source that is available from a building. A simple prismatic Timoshenko beam model with soil-structure interaction (SSI) is developed to approximate mode shapes of buildings using natural frequency ratios. A closed form solution with complete vibration modes is derived. In addition, a new method to rapidly estimate total displacement response of a building based on limited observational data, in some cases from a single seismometer, is presented. The total response of a building is modeled by the combination of the initial vibrating motion due to an upward traveling wave, and the subsequent motion as the low-frequency resonant mode response. Furthermore, the expected shaking intensities in tall buildings will be significantly different from that on the ground during earthquakes. Examples are included to estimate the characteristics of shaking that can be expected in mid-rise to high-rise buildings. Development of engineering applications (e.g., human comfort prediction and automated elevator control) for earthquake early warning system using probabilistic framework and statistical learning technique is addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental question in neuroscience is how distributed networks of neurons communicate and coordinate dynamically and specifically. Several models propose that oscillating local networks can transiently couple to each other through phase-locked firing. Coherent local field potentials (LFP) between synaptically connected regions is often presented as evidence for such coupling. The physiological correlates of LFP signals depend on many anatomical and physiological factors, however, and how the underlying neural processes collectively generate features of different spatiotemporal scales is poorly understood. High frequency oscillations in the hippocampus, including gamma rhythms (30-100 Hz) that are organized by the theta oscillations (5-10 Hz) during active exploration and REM sleep, as well as sharp wave-ripples (SWRs, 140-200 Hz) during immobility or slow wave sleep, have each been associated with various aspects of learning and memory. Deciphering their physiology and functional consequences is crucial to understanding the operation of the hippocampal network.

We investigated the origins and coordination of high frequency LFPs in the hippocampo-entorhinal network using both biophysical models and analyses of large-scale recordings in behaving and sleeping rats. We found that the synchronization of pyramidal cell spikes substantially shapes, or even dominates, the electrical signature of SWRs in area CA1 of the hippocampus. The precise mechanisms coordinating this synchrony are still unresolved, but they appear to also affect CA1 activity during theta oscillations. The input to CA1, which often arrives in the form of gamma-frequency waves of activity from area CA3 and layer 3 of entorhinal cortex (EC3), did not strongly influence the timing of CA1 pyramidal cells. Rather, our data are more consistent with local network interactions governing pyramidal cells' spike timing during the integration of their inputs. Furthermore, the relative timing of input from EC3 and CA3 during the theta cycle matched that found in previous work to engage mechanisms for synapse modification and active dendritic processes. Our work demonstrates how local networks interact with upstream inputs to generate a coordinated hippocampal output during behavior and sleep, in the form of theta-gamma coupling and SWRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Being able to detect a single molecule without the use of labels has been a long standing goal of bioengineers and physicists. This would simplify applications ranging from single molecular binding studies to those involving public health and security, improved drug screening, medical diagnostics, and genome sequencing. One promising technique that has the potential to detect single molecules is the microtoroid optical resonator. The main obstacle to detecting single molecules, however, is decreasing the noise level of the measurements such that a single molecule can be distinguished from background. We have used laser frequency locking in combination with balanced detection and data processing techniques to reduce the noise level of these devices and report the detection of a wide range of nanoscale objects ranging from nanoparticles with radii from 100 to 2.5 nm, to exosomes, ribosomes, and single protein molecules (mouse immunoglobulin G and human interleukin-2). We further extend the exosome results towards creating a non-invasive tumor biopsy assay. Our results, covering several orders of magnitude of particle radius (100 nm to 2 nm), agree with the `reactive' model prediction for the frequency shift of the resonator upon particle binding. In addition, we demonstrate that molecular weight may be estimated from the frequency shift through a simple formula, thus providing a basis for an ``optical mass spectrometer'' in solution. We anticipate that our results will enable many applications, including more sensitive medical diagnostics and fundamental studies of single receptor-ligand and protein-protein interactions in real time. The thesis summarizes what we have achieved thus far and shows that the goal of detecting a single molecule without the use of labels can now be realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental demonstrations and theoretical analyses of a new electromechanical energy conversion process which is made feasible only by the unique properties of superconductors are presented in this dissertation. This energy conversion process is characterized by a highly efficient direct energy transformation from microwave energy into mechanical energy or vice versa and can be achieved at high power level. It is an application of a well established physical principle known as the adiabatic theorem (Boltzmann-Ehrenfest theorem) and in this case time dependent superconducting boundaries provide the necessary interface between the microwave energy on one hand and the mechanical work on the other. The mechanism which brings about the conversion is another known phenomenon - the Doppler effect. The resonant frequency of a superconducting resonator undergoes continuous infinitesimal shifts when the resonator boundaries are adiabatically changed in time by an external mechanical mechanism. These small frequency shifts can accumulate coherently over an extended period of time to produce a macroscopic shift when the resonator remains resonantly excited throughout this process. In addition, the electromagnetic energy in s ide the resonator which is proportional to the oscillation frequency is al so accordingly changed so that a direct conversion between electromagnetic and mechanical energies takes place. The intrinsically high efficiency of this process is due to the electromechanical interactions involved in the conversion rather than a process of thermodynamic nature and therefore is not limited by the thermodynamic value.

A highly reentrant superconducting resonator resonating in the range of 90 to 160 MHz was used for demonstrating this new conversion technique. The resonant frequency was mechanically modulated at a rate of two kilohertz. Experimental results showed that the time evolution of the electromagnetic energy inside this frequency modulated (FM) superconducting resonator indeed behaved as predicted and thus demonstrated the unique features of this process. A proposed usage of FM superconducting resonators as electromechanical energy conversion devices is given along with some practical design considerations. This device seems to be very promising in producing high power (~10W/cm^3) microwave energy at 10 - 30 GHz.

Weakly coupled FM resonator system is also analytically studied for its potential applications. This system shows an interesting switching characteristic with which the spatial distribution of microwave energies can be manipulated by external means. It was found that if the modulation was properly applied, a high degree (>95%) of unidirectional energy transfer from one resonator to the other could be accomplished. Applications of this characteristic to fabricate high efficiency energy switching devices and high power microwave pulse generators are also found feasible with present superconducting technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface resistance and the critical magnetic field of lead electroplated on copper were studied at 205 MHz in a half-wave coaxial resonator. The observed surface resistance at a low field level below 4.2°K could be well described by the BCS surface resistance with the addition of a temperature independent residual resistance. The available experimental data suggest that the major fraction of the residual resistance in the present experiment was due to the presence of an oxide layer on the surface. At higher magnetic field levels the surface resistance was found to be enhanced due to surface imperfections.

The attainable rf critical magnetic field between 2.2°K and T_c of lead was found to be limited not by the thermodynamic critical field but rather by the superheating field predicted by the one-dimensional Ginzburg-Landau theory. The observed rf critical field was very close to the expected superheating field, particularly in the higher reduced temperature range, but showed somewhat stronger temperature dependence than the expected superheating field in the lower reduced temperature range.

The rf critical magnetic field was also studied at 90 MHz for pure tin and indium, and for a series of SnIn and InBi alloys spanning both type I and type II superconductivity. The samples were spherical with typical diameters of 1-2 mm and a helical resonator was used to generate the rf magnetic field in the measurement. The results of pure samples of tin and indium showed that a vortex-like nucleation of the normal phase was responsible for the superconducting-to-normal phase transition in the rf field at temperatures up to about 0.98-0.99 T_c' where the ideal superheating limit was being reached. The results of the alloy samples showed that the attainable rf critical fields near T_c were well described by the superheating field predicted by the one-dimensional GL theory in both the type I and type II regimes. The measurement was also made at 300 MHz resulting in no significant change in the rf critical field. Thus it was inferred that the nucleation time of the normal phase, once the critical field was reached, was small compared with the rf period in this frequency range.