5 resultados para Trimmed likelihood
em CaltechTHESIS
Resumo:
The brain is perhaps the most complex system to have ever been subjected to rigorous scientific investigation. The scale is staggering: over 10^11 neurons, each making an average of 10^3 synapses, with computation occurring on scales ranging from a single dendritic spine, to an entire cortical area. Slowly, we are beginning to acquire experimental tools that can gather the massive amounts of data needed to characterize this system. However, to understand and interpret these data will also require substantial strides in inferential and statistical techniques. This dissertation attempts to meet this need, extending and applying the modern tools of latent variable modeling to problems in neural data analysis.
It is divided into two parts. The first begins with an exposition of the general techniques of latent variable modeling. A new, extremely general, optimization algorithm is proposed - called Relaxation Expectation Maximization (REM) - that may be used to learn the optimal parameter values of arbitrary latent variable models. This algorithm appears to alleviate the common problem of convergence to local, sub-optimal, likelihood maxima. REM leads to a natural framework for model size selection; in combination with standard model selection techniques the quality of fits may be further improved, while the appropriate model size is automatically and efficiently determined. Next, a new latent variable model, the mixture of sparse hidden Markov models, is introduced, and approximate inference and learning algorithms are derived for it. This model is applied in the second part of the thesis.
The second part brings the technology of part I to bear on two important problems in experimental neuroscience. The first is known as spike sorting; this is the problem of separating the spikes from different neurons embedded within an extracellular recording. The dissertation offers the first thorough statistical analysis of this problem, which then yields the first powerful probabilistic solution. The second problem addressed is that of characterizing the distribution of spike trains recorded from the same neuron under identical experimental conditions. A latent variable model is proposed. Inference and learning in this model leads to new principled algorithms for smoothing and clustering of spike data.
Resumo:
The main theme running through these three chapters is that economic agents are often forced to respond to events that are not a direct result of their actions or other agents actions. The optimal response to these shocks will necessarily depend on agents' understanding of how these shocks arise. The economic environment in the first two chapters is analogous to the classic chain store game. In this setting, the addition of unintended trembles by the agents creates an environment better suited to reputation building. The third chapter considers the competitive equilibrium price dynamics in an overlapping generations environment when there are supply and demand shocks.
The first chapter is a game theoretic investigation of a reputation building game. A sequential equilibrium model, called the "error prone agents" model, is developed. In this model, agents believe that all actions are potentially subjected to an error process. Inclusion of this belief into the equilibrium calculation provides for a richer class of reputation building possibilities than when perfect implementation is assumed.
In the second chapter, maximum likelihood estimation is employed to test the consistency of this new model and other models with data from experiments run by other researchers that served as the basis for prominent papers in this field. The alternate models considered are essentially modifications to the standard sequential equilibrium. While some models perform quite well in that the nature of the modification seems to explain deviations from the sequential equilibrium quite well, the degree to which these modifications must be applied shows no consistency across different experimental designs.
The third chapter is a study of price dynamics in an overlapping generations model. It establishes the existence of a unique perfect-foresight competitive equilibrium price path in a pure exchange economy with a finite time horizon when there are arbitrarily many shocks to supply or demand. One main reason for the interest in this equilibrium is that overlapping generations environments are very fruitful for the study of price dynamics, especially in experimental settings. The perfect foresight assumption is an important place to start when examining these environments because it will produce the ex post socially efficient allocation of goods. This characteristic makes this a natural baseline to which other models of price dynamics could be compared.
Resumo:
In this thesis we build a novel analysis framework to perform the direct extraction of all possible effective Higgs boson couplings to the neutral electroweak gauge bosons in the H → ZZ(*) → 4l channel also referred to as the golden channel. We use analytic expressions of the full decay differential cross sections for the H → VV' → 4l process, and the dominant irreducible standard model qq ̄ → 4l background where 4l = 2e2μ,4e,4μ. Detector effects are included through an explicit convolution of these analytic expressions with transfer functions that model the detector responses as well as acceptance and efficiency effects. Using the full set of decay observables, we construct an unbinned 8-dimensional detector level likelihood function which is con- tinuous in the effective couplings, and includes systematics. All potential anomalous couplings of HVV' where V = Z,γ are considered, allowing for general CP even/odd admixtures and any possible phases. We measure the CP-odd mixing between the tree-level HZZ coupling and higher order CP-odd couplings to be compatible with zero, and in the range [−0.40, 0.43], and the mixing between HZZ tree-level coupling and higher order CP -even coupling to be in the ranges [−0.66, −0.57] ∪ [−0.15, 1.00]; namely compatible with a standard model Higgs. We discuss the expected precision in determining the various HVV' couplings in future LHC runs. A powerful and at first glance surprising prediction of the analysis is that with 100-400 fb-1, the golden channel will be able to start probing the couplings of the Higgs boson to diphotons in the 4l channel. We discuss the implications and further optimization of the methods for the next LHC runs.
Resumo:
This thesis studies decision making under uncertainty and how economic agents respond to information. The classic model of subjective expected utility and Bayesian updating is often at odds with empirical and experimental results; people exhibit systematic biases in information processing and often exhibit aversion to ambiguity. The aim of this work is to develop simple models that capture observed biases and study their economic implications.
In the first chapter I present an axiomatic model of cognitive dissonance, in which an agent's response to information explicitly depends upon past actions. I introduce novel behavioral axioms and derive a representation in which beliefs are directionally updated. The agent twists the information and overweights states in which his past actions provide a higher payoff. I then characterize two special cases of the representation. In the first case, the agent distorts the likelihood ratio of two states by a function of the utility values of the previous action in those states. In the second case, the agent's posterior beliefs are a convex combination of the Bayesian belief and the one which maximizes the conditional value of the previous action. Within the second case a unique parameter captures the agent's sensitivity to dissonance, and I characterize a way to compare sensitivity to dissonance between individuals. Lastly, I develop several simple applications and show that cognitive dissonance contributes to the equity premium and price volatility, asymmetric reaction to news, and belief polarization.
The second chapter characterizes a decision maker with sticky beliefs. That is, a decision maker who does not update enough in response to information, where enough means as a Bayesian decision maker would. This chapter provides axiomatic foundations for sticky beliefs by weakening the standard axioms of dynamic consistency and consequentialism. I derive a representation in which updated beliefs are a convex combination of the prior and the Bayesian posterior. A unique parameter captures the weight on the prior and is interpreted as the agent's measure of belief stickiness or conservatism bias. This parameter is endogenously identified from preferences and is easily elicited from experimental data.
The third chapter deals with updating in the face of ambiguity, using the framework of Gilboa and Schmeidler. There is no consensus on the correct way way to update a set of priors. Current methods either do not allow a decision maker to make an inference about her priors or require an extreme level of inference. In this chapter I propose and axiomatize a general model of updating a set of priors. A decision maker who updates her beliefs in accordance with the model can be thought of as one that chooses a threshold that is used to determine whether a prior is plausible, given some observation. She retains the plausible priors and applies Bayes' rule. This model includes generalized Bayesian updating and maximum likelihood updating as special cases.
Resumo:
The problem of global optimization of M phase-incoherent signals in N complex dimensions is formulated. Then, by using the geometric approach of Landau and Slepian, conditions for optimality are established for N = 2 and the optimal signal sets are determined for M = 2, 3, 4, 6, and 12.
The method is the following: The signals are assumed to be equally probable and to have equal energy, and thus are represented by points ṡi, i = 1, 2, …, M, on the unit sphere S1 in CN. If Wik is the halfspace determined by ṡi and ṡk and containing ṡi, i.e. Wik = {ṙϵCN:| ≥ | ˂ṙ, ṡk˃|}, then the Ʀi = ∩/k≠i Wik, i = 1, 2, …, M, the maximum likelihood decision regions, partition S1. For additive complex Gaussian noise ṅ and a received signal ṙ = ṡiejϴ + ṅ, where ϴ is uniformly distributed over [0, 2π], the probability of correct decoding is PC = 1/πN ∞/ʃ/0 r2N-1e-(r2+1)U(r)dr, where U(r) = 1/M M/Ʃ/i=1 Ʀi ʃ/∩ S1 I0(2r | ˂ṡ, ṡi˃|)dσ(ṡ), and r = ǁṙǁ.
For N = 2, it is proved that U(r) ≤ ʃ/Cα I0(2r|˂ṡ, ṡi˃|)dσ(ṡ) – 2K/M. h(1/2K [Mσ(Cα)-σ(S1)]), where Cα = {ṡϵS1:|˂ṡ, ṡi˃| ≥ α}, K is the total number of boundaries of the net on S1 determined by the decision regions, and h is the strictly increasing strictly convex function of σ(Cα∩W), (where W is a halfspace not containing ṡi), given by h = ʃ/Cα∩W I0 (2r|˂ṡ, ṡi˃|)dσ(ṡ). Conditions for equality are established and these give rise to the globally optimal signal sets for M = 2, 3, 4, 6, and 12.