20 resultados para Transmitting telescope

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used the technique of non-redundant masking at the Palomar 200-inch telescope and radio VLBI imaging software to make optical aperture synthesis maps of two binary stars, β Corona Borealis and σ Herculis. The dynamic range of the map of β CrB, a binary star with a separation of 230 milliarcseconds is 50:1. For σ Her, we find a separation of 70 milliarcseconds and the dynamic range of our image is 30:1. These demonstrate the potential of the non-redundant masking technique for diffraction-limited imaging of astronomical objects with high dynamic range.

We find that the optimal integration time for measuring the closure phase is longer than that for measuring the fringe amplitude. There is not a close relationship between amplitude errors and phase errors, as is found in radio interferometry. Amplitude self calibration is less effective at optical wavelengths than at radio wavelengths. Primary beam sensitivity correction made in radio aperture synthesis is not necessary in optical aperture synthesis.

The effects of atmospheric disturbances on optical aperture synthesis have been studied by Monte Carlo simulations based on the Kolmogorov theory of refractive-index fluctuations. For the non-redundant masking with τ_c-sized apertures, the simulated fringe amplitude gives an upper bound of the observed fringe amplitude. A smooth transition is seen from the non-redundant masking regime to the speckle regime with increasing aperture size. The fractional reduction of the fringe amplitude according to the bandwidth is nearly independent of the aperture size. The limiting magnitude of optical aperture synthesis with τ_c-sized apertures and that with apertures larger than τ_c are derived.

Monte Carlo simulations are also made to study the sensitivity and resolution of the bispectral analysis of speckle interferometry. We present the bispectral modulation transfer function and its signal-to-noise ratio at high light levels. The results confirm the validity of the heuristic interferometric view of image-forming process in the mid-spatial-frequency range. The signal-to- noise ratio of the bispectrum at arbitrary light levels is derived in the mid-spatial-frequency range.

The non-redundant masking technique is suitable for imaging bright objects with high resolution and high dynamic range, while the faintest limit will be better pursued by speckle imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.

In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.

The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.

In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.

The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.

Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blazars are active galaxies with a jet closely oriented to our line of sight. They are powerful, variable emitters from radio to gamma-ray wavelengths. Although the general picture of synchrotron emission at low energies and inverse Compton at high energies is well established, important aspects of blazars are not well understood. In particular, the location of the gamma-ray emission region is not clearly established, with some theories favoring a location close to the central engine, while others place it at parsec scales in the radio jet.

We developed a program to locate the gamma-ray emission site in blazars, through the study of correlated variations between their gamma-ray and radio-wave emission. Correlated variations are expected when there is a relation between emission processes at both bands, while delays tell us about the relative location of their energy generation zones. Monitoring at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope started in mid-2007. The program monitors 1593 blazars twice per week, including all blazars detected by the Fermi Gamma-ray Space Telescope (Fermi) north of -20 degrees declination. This program complements the continuous monitoring of gamma-rays by Fermi.

Three year long gamma-ray light curves for bright Fermi blazars are cross-correlated with four years of radio monitoring. The significance of cross-correlation peaks is investigated using simulations that account for the uneven sampling and noise properties of the light curves, which are modeled as red-noise processes with a simple power-law power spectral density. We found that out of 86 sources with high quality data, only three show significant correlations (AO 0235+164, B2 2308+34 and PKS 1502+106). Additionally, we find a significant correlation for Mrk 421 when including the strong gamma-ray/radio flare of late 2012. In all four cases radio variations lag gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. For PKS 1502+106 we locate the gamma-ray emission site parsecs away from the central engine, thus disfavoring the model of Blandford and Levinson (1995), while other cases are inconclusive. These findings show that continuous monitoring over long time periods is required to understand the cross-correlation between gamma-ray and radio-wave variability in most blazars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent observations of the temperature anisotropies of the cosmic microwave background (CMB) favor an inflationary paradigm in which the scale factor of the universe inflated by many orders of magnitude at some very early time. Such a scenario would produce the observed large-scale isotropy and homogeneity of the universe, as well as the scale-invariant perturbations responsible for the observed (10 parts per million) anisotropies in the CMB. An inflationary epoch is also theorized to produce a background of gravitational waves (or tensor perturbations), the effects of which can be observed in the polarization of the CMB. The E-mode (or parity even) polarization of the CMB, which is produced by scalar perturbations, has now been measured with high significance. Con- trastingly, today the B-mode (or parity odd) polarization, which is sourced by tensor perturbations, has yet to be observed. A detection of the B-mode polarization of the CMB would provide strong evidence for an inflationary epoch early in the universe’s history.

In this work, we explore experimental techniques and analysis methods used to probe the B- mode polarization of the CMB. These experimental techniques have been used to build the Bicep2 telescope, which was deployed to the South Pole in 2009. After three years of observations, Bicep2 has acquired one of the deepest observations of the degree-scale polarization of the CMB to date. Similarly, this work describes analysis methods developed for the Bicep1 three-year data analysis, which includes the full data set acquired by Bicep1. This analysis has produced the tightest constraint on the B-mode polarization of the CMB to date, corresponding to a tensor-to-scalar ratio estimate of r = 0.04±0.32, or a Bayesian 95% credible interval of r < 0.70. These analysis methods, in addition to producing this new constraint, are directly applicable to future analyses of Bicep2 data. Taken together, the experimental techniques and analysis methods described herein promise to open a new observational window into the inflationary epoch and the initial conditions of our universe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptive optics (AO) corrects distortions created by atmospheric turbulence and delivers diffraction-limited images on ground-based telescopes. The vastly improved spatial resolution and sensitivity has been utilized for studying everything from the magnetic fields of sunspots upto the internal dynamics of high-redshift galaxies. This thesis about AO science from small and large telescopes is divided into two parts: Robo-AO and magnetar kinematics.

In the first part, I discuss the construction and performance of the world’s first fully autonomous visible light AO system, Robo-AO, at the Palomar 60-inch telescope. Robo-AO operates extremely efficiently with an overhead < 50s, typically observing about 22 targets every hour. We have performed large AO programs observing a total of over 7,500 targets since May 2012. In the visible band, the images have a Strehl ratio of about 10% and achieve a contrast of upto 6 magnitudes at a separation of 1′′. The full-width at half maximum achieved is 110–130 milli-arcsecond. I describe how Robo-AO is used to constrain the evolutionary models of low-mass pre-main-sequence stars by measuring resolved spectral energy distributions of stellar multiples in the visible band, more than doubling the current sample. I conclude this part with a discussion of possible future improvements to the Robo-AO system.

In the second part, I describe a study of magnetar kinematics using high-resolution near-infrared (NIR) AO imaging from the 10-meter Keck II telescope. Measuring the proper motions of five magnetars with a precision of upto 0.7 milli-arcsecond/yr, we have more than tripled the previously known sample of magnetar proper motions and proved that magnetar kinematics are equivalent to those of radio pulsars. We conclusively showed that SGR 1900+14 and SGR 1806-20 were ejected from the stellar clusters with which they were traditionally associated. The inferred kinematic ages of these two magnetars are 6±1.8 kyr and 650±300 yr respectively. These ages are a factor of three to four times greater than their respective characteristic ages. The calculated braking index is close to unity as compared to three for the vacuum dipole model and 2.5-2.8 as measured for young pulsars. I conclude this section by describing a search for NIR counterparts of new magnetars and a future promise of polarimetric investigation of a magnetars’ NIR emission mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a concept for ultra-lightweight deformable mirrors based on a thin substrate of optical surface quality coated with continuous active piezopolymer layers that provide modes of actuation and shape correction. This concept eliminates any kind of stiff backing structure for the mirror surface and exploits micro-fabrication technologies to provide a tight integration of the active materials into the mirror structure, to avoid actuator print-through effects. Proof-of-concept, 10-cm-diameter mirrors with a low areal density of about 0.5 kg/m² have been designed, built and tested to measure their shape-correction performance and verify the models used for design. The low cost manufacturing scheme uses replication techniques, and strives for minimizing residual stresses that deviate the optical figure from the master mandrel. It does not require precision tolerancing, is lightweight, and is therefore potentially scalable to larger diameters for use in large, modular space telescopes. Other potential applications for such a laminate could include ground-based mirrors for solar energy collection, adaptive optics for atmospheric turbulence, laser communications, and other shape control applications.

The immediate application for these mirrors is for the Autonomous Assembly and Reconfiguration of a Space Telescope (AAReST) mission, which is a university mission under development by Caltech, the University of Surrey, and JPL. The design concept, fabrication methodology, material behaviors and measurements, mirror modeling, mounting and control electronics design, shape control experiments, predictive performance analysis, and remaining challenges are presented herein. The experiments have validated numerical models of the mirror, and the mirror models have been used within a model of the telescope in order to predict the optical performance. A demonstration of this mirror concept, along with other new telescope technologies, is planned to take place during the AAReST mission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smartphones and other powerful sensor-equipped consumer devices make it possible to sense the physical world at an unprecedented scale. Nearly 2 million Android and iOS devices are activated every day, each carrying numerous sensors and a high-speed internet connection. Whereas traditional sensor networks have typically deployed a fixed number of devices to sense a particular phenomena, community networks can grow as additional participants choose to install apps and join the network. In principle, this allows networks of thousands or millions of sensors to be created quickly and at low cost. However, making reliable inferences about the world using so many community sensors involves several challenges, including scalability, data quality, mobility, and user privacy.

This thesis focuses on how learning at both the sensor- and network-level can provide scalable techniques for data collection and event detection. First, this thesis considers the abstract problem of distributed algorithms for data collection, and proposes a distributed, online approach to selecting which set of sensors should be queried. In addition to providing theoretical guarantees for submodular objective functions, the approach is also compatible with local rules or heuristics for detecting and transmitting potentially valuable observations. Next, the thesis presents a decentralized algorithm for spatial event detection, and describes its use detecting strong earthquakes within the Caltech Community Seismic Network. Despite the fact that strong earthquakes are rare and complex events, and that community sensors can be very noisy, our decentralized anomaly detection approach obtains theoretical guarantees for event detection performance while simultaneously limiting the rate of false alarms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The propagation of the fast magnetosonic wave in a tokamak plasma has been investigated at low power, between 10 and 300 watts, as a prelude to future heating experiments.

The attention of the experiments has been focused on the understanding of the coupling between a loop antenna and a plasma-filled cavity. Special emphasis has been given to the measurement of the complex loading impedance of the plasma. The importance of this measurement is that once the complex loading impedance of the plasma is known, a matching network can be designed so that the r.f. generator impedance can be matched to one of the cavity modes, thus delivering maximum power to the plasma. For future heating experiments it will be essential to be able to match the generator impedance to a cavity mode in order to couple the r.f. energy efficiently to the plasma.

As a consequence of the complex impedance measurements, it was discovered that the designs of the transmitting antenna and the impedance matching network are both crucial. The losses in the antenna and the matching network must be kept below the plasma loading in order to be able to detect the complex plasma loading impedance. This is even more important in future heating experiments, because the fundamental basis for efficient heating before any other consideration is to deliver more energy into the plasma than is dissipated in the antenna system.

The characteristics of the magnetosonic cavity modes are confirmed by three different methods. First, the cavity modes are observed as voltage maxima at the output of a six-turn receiving probe. Second, they also appear as maxima in the input resistance of the transmitting antenna. Finally, when the real and imaginary parts of the measured complex input impedance of the antenna are plotted in the complex impedance plane, the resulting curves are approximately circles, indicating a resonance phenomenon.

The observed plasma loading resistances at the various cavity modes are as high as 3 to 4 times the basic antenna resistance (~ .4 Ω). The estimated cavity Q’s were between 400 and 700. This means that efficient energy coupling into the tokamak and low losses in the antenna system are possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epoch of reionization remains one of the last uncharted eras of cosmic history, yet this time is of crucial importance, encompassing the formation of both the first galaxies and the first metals in the universe. In this thesis, I present four related projects that both characterize the abundance and properties of these first galaxies and uses follow-up observations of these galaxies to achieve one of the first observations of the neutral fraction of the intergalactic medium during the heart of the reionization era.

First, we present the results of a spectroscopic survey using the Keck telescopes targeting 6.3 < z < 8.8 star-forming galaxies. We secured observations of 19 candidates, initially selected by applying the Lyman break technique to infrared imaging data from the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST). This survey builds upon earlier work from Stark et al. (2010, 2011), which showed that star-forming galaxies at 3 < z < 6, when the universe was highly ionized, displayed a significant increase in strong Lyman alpha emission with redshift. Our work uses the LRIS and NIRSPEC instruments to search for Lyman alpha emission in candidates at a greater redshift in the observed near-infrared, in order to discern if this evolution continues, or is quenched by an increase in the neutral fraction of the intergalactic medium. Our spectroscopic observations typically reach a 5-sigma limiting sensitivity of < 50 AA. Despite expecting to detect Lyman alpha at 5-sigma in 7-8 galaxies based on our Monte Carlo simulations, we only achieve secure detections in two of 19 sources. Combining these results with a similar sample of 7 galaxies from Fontana et al. (2010), we determine that these few detections would only occur in < 1% of simulations if the intrinsic distribution was the same as that at z ~ 6. We consider other explanations for this decline, but find the most convincing explanation to be an increase in the neutral fraction of the intergalactic medium. Using theoretical models, we infer a neutral fraction of X_HI ~ 0.44 at z = 7.

Second, we characterize the abundance of star-forming galaxies at z > 6.5 again using WFC3 onboard the HST. This project conducted a detailed search for candidates both in the Hubble Ultra Deep Field as well as a number of additional wider Hubble Space Telescope surveys to construct luminosity functions at both z ~ 7 and 8, reaching 0.65 and 0.25 mag fainter than any previous surveys, respectively. With this increased depth, we achieve some of the most robust constraints on the Schechter function faint end slopes at these redshifts, finding very steep values of alpha_{z~7} = -1.87 +/- 0.18 and alpha_{z~8} = -1.94 +/- 0.23. We discuss these results in the context of cosmic reionization, and show that given reasonable assumptions about the ionizing spectra and escape fraction of ionizing photons, only half the photons needed to maintain reionization are provided by currently observable galaxies at z ~ 7-8. We show that an extension of the luminosity function down to M_{UV} = -13.0, coupled with a low level of star-formation out to higher redshift, can fit all available constraints on the ionization history of the universe.

Third, we investigate the strength of nebular emission in 3 < z < 5 star-forming galaxies. We begin by using the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope to investigate the strength of H alpha emission in a sample of 3.8 < z < 5.0 spectroscopically confirmed galaxies. We then conduct near-infrared observations of star-forming galaxies at 3 < z < 3.8 to investigate the strength of the [OIII] 4959/5007 and H beta emission lines from the ground using MOSFIRE. In both cases, we uncover near-ubiquitous strong nebular emission, and find excellent agreement between the fluxes derived using the separate methods. For a subset of 9 objects in our MOSFIRE sample that have secure Spitzer IRAC detections, we compare the emission line flux derived from the excess in the K_s band photometry to that derived from direct spectroscopy and find 7 to agree within a factor of 1.6, with only one catastrophic outlier. Finally, for a different subset for which we also have DEIMOS rest-UV spectroscopy, we compare the relative velocities of Lyman alpha and the rest-optical nebular lines which should trace the cites of star-formation. We find a median velocity offset of only v_{Ly alpha} = 149 km/s, significantly less than the 400 km/s observed for star-forming galaxies with weaker Lyman alpha emission at z = 2-3 (Steidel et al. 2010), and show that this decrease can be explained by a decrease in the neutral hydrogen column density covering the galaxy. We discuss how this will imply a lower neutral fraction for a given observed extinction of Lyman alpha when its visibility is used to probe the ionization state of the intergalactic medium.

Finally, we utilize the recent CANDELS wide-field, infra-red photometry over the GOODS-N and S fields to re-analyze the use of Lyman alpha emission to evaluate the neutrality of the intergalactic medium. With this new data, we derive accurate ultraviolet spectral slopes for a sample of 468 3 < z < 6 star-forming galaxies, already observed in the rest-UV with the Keck spectroscopic survey (Stark et al. 2010). We use a Bayesian fitting method which accurately accounts for contamination and obscuration by skylines to derive a relationship between the UV-slope of a galaxy and its intrinsic Lyman alpha equivalent width probability distribution. We then apply this data to spectroscopic surveys during the reionization era, including our own, to accurately interpret the drop in observed Lyman alpha emission. From our most recent such MOSFIRE survey, we also present evidence for the most distant galaxy confirmed through emission line spectroscopy at z = 7.62, as well as a first detection of the CIII]1907/1909 doublet at z > 7.

We conclude the thesis by exploring future prospects and summarizing the results of Robertson et al. (2013). This work synthesizes many of the measurements in this thesis, along with external constraints, to create a model of reionization that fits nearly all available constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An instrument, the Caltech High Energy Isotope Spectrometer Telescope (HEIST), has been developed to measure isotopic abundances of cosmic ray nuclei in the charge range 3 ≤ Z ≤ 28 and the energy range between 30 and 800 MeV/nuc by employing an energy loss -- residual energy technique. Measurements of particle trajectories and energy losses are made using a multiwire proportional counter hodoscope and a stack of CsI(TI) crystal scintillators, respectively. A detailed analysis has been made of the mass resolution capabilities of this instrument.

Landau fluctuations set a fundamental limit on the attainable mass resolution, which for this instrument ranges between ~.07 AMU for z~3 and ~.2 AMU for z~2b. Contributions to the mass resolution due to uncertainties in measuring the path-length and energy losses of the detected particles are shown to degrade the overall mass resolution to between ~.1 AMU (z~3) and ~.3 AMU (z~2b).

A formalism, based on the leaky box model of cosmic ray propagation, is developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. This purely secondary isotope is used as a tracer of secondary production during propagation. This technique is illustrated for the isotopes of the elements O, Ne, S, Ar and Ca.

The uncertainties in the derived source ratios due to errors in fragmentation and total inelastic cross sections, in observed spectral shapes, and in measured abundances are evaluated. It is shown that the dominant sources of uncertainty are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances.

These results are applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isotopic composition of hydrogen and helium in solar cosmic rays provides a means of studying solar flare particle acceleration mechanisms since the enhanced relative abundance of rare isotopes, such as 2H, 3H and 3He, is due to their production by inelastic nuclear collisions in the solar atmosphere during the flare. In this work the Caltech Electron/Isotope Spectrometer on the IMP-7 spacecraft has been used to measure this isotopic composition. The response of the dE/dx-E particle telescope is discussed and alpha particle channeling in thin detectors is identified as an important background source affecting measurement of low values of (3He/4He).

The following flare-averaged results are obtained for the period, October, 1972 - November, 1973: (2H/1H) = 7+10-6 X 10-6 (1.6 - 8.6 MeV/nuc), (3H/1H) less than 3.4 x 10-6 (1.2 - 6.8 MeV/nuc), (3He/4He) = (9 ± 4) x 10-3, (3He/1H) = (1.7 ± 0.7) x 10-4 (3.1 - 15.0 MeV/nuc). The deuterium and tritium ratios are significantly lower than the same ratios at higher energies, suggesting that the deuterium and tritium spectra are harder than that of the protons. They are, however, consistent with the same thin target model relativistic path length of ~ 1 g/cm2 (or equivalently ~ 0.3 g/cm2 at 30 MeV/nuc) which is implied by the higher energy results. The 3He results, consistent with previous observations, would imply a path length at least 3 times as long, but the observations may be contaminated by small 3He rich solar events.

During 1973 three "3He rich events," containing much more 3He than 2H or 3H were observed on 14 February, 29 June and 5 September. Although the total production cross sections for 2H,3H and 3He are comparable, an upper limit to (2H/3He) and (3H/3He) was 0.053 (2.9-6.8 MeV/nuc), summing over the three events. This upper limit is marginally consistent with Ramaty and Kozlovsky's thick target model which accounts for such events by the nuclear reaction kinematics and directional properties of the flare acceleration process. The 5 September event was particularly significant in that much more 3He was observed than 4He and the fluxes of 3He and 1H were about equal. The range of (3He/4He) for such events reported to date is 0.2 to ~ 6 while (3He/1H) extends from 10-3 to ~ 1. The role of backscattered and mirroring protons and alphas in accounting for such variations is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report measurements of isotope abundance ratios for 5-50 MeV/nuc nuclei from a large solar flare that occurred on September 23, 1978. The measurements were made by the Heavy Isotope Spectrometer Telescope (HIST) on the ISEE-3 satellite orbiting the Sun near an Earth-Sun libration point approximately one million miles sunward of the Earth. We report finite values for the isotope abundance ratios 13C/12C, 15N/14N, 18O/16O, 22Ne/ 20Ne, 25Mg/24Mg, and 26Mg/24Mg, and upper limits for the isotope abundance ratios 3He/4He, 14C/12C, 17O/16O, and 21Ne/20Ne.

We measured element abundances and spectra to compare the September 23, 1978 flare with other flares reported in the literature. The flare is a typical large flare with "low" Fe/O abundance (≤ 0.1).

For 13C/12C, 15N/14N, 18O/16O, 25Mg/ 24Mg, and 26Mg/24Mg, our measured isotope abundance ratios agree with the solar system abundance ratios of Cameron (1981). For neon we measure 22Ne/20Ne = 0.109 + 0.026 - 0.019, a value that is different with confidence 97.5% from the abundance measured in the solar wind by Geiss at al. (1972) of 22Ne/20Ne = 0.073 ± 0.001. Our measurement for 22Ne/20Ne agrees with the isotopic composition of the meteoritic component neon-A.

Separate arguments appear to rule out simple mass fractionation in the solar wind and in our solar energetic particle measurements as the cause of the discrepancy in the comparison of the apparent compositions of these two sources of solar material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis has two major parts. The first part of the thesis will describe a high energy cosmic ray detector -- the High Energy Isotope Spectrometer Telescope (HEIST). HEIST is a large area (0.25 m2sr) balloon-borne isotope spectrometer designed to make high-resolution measurements of isotopes in the element range from neon to nickel (10 ≤ Z ≤ 28) at energies of about 2 GeV/nucleon. The instrument consists of a stack of 12 NaI(Tl) scintilla tors, two Cerenkov counters, and two plastic scintillators. Each of the 2-cm thick NaI disks is viewed by six 1.5-inch photomultipliers whose combined outputs measure the energy deposition in that layer. In addition, the six outputs from each disk are compared to determine the position at which incident nuclei traverse each layer to an accuracy of ~2 mm. The Cerenkov counters, which measure particle velocity, are each viewed by twelve 5-inch photomultipliers using light integration boxes.

HEIST-2 determines the mass of individual nuclei by measuring both the change in the Lorentz factor (Δγ) that results from traversing the NaI stack, and the energy loss (ΔΕ) in the stack. Since the total energy of an isotope is given by Ε = γM, the mass M can be determined by M = ΔΕ/Δγ. The instrument is designed to achieve a typical mass resolution of 0.2 amu.

The second part of this thesis presents an experimental measurement of the isotopic composition of the fragments from the breakup of high energy 40Ar and 56Fe nuclei. Cosmic ray composition studies rely heavily on semi-empirical estimates of the cross-sections for the nuclear fragmentation reactions which alter the composition during propagation through the interstellar medium. Experimentally measured yields of isotopes from the fragmentation of 40Ar and 56Fe are compared with calculated yields based on semi-empirical cross-section formulae. There are two sets of measurements. The first set of measurements, made at the Lawrence Berkeley Laboratory Bevalac using a beam of 287 MeV/nucleon 40Ar incident on a CH2 target, achieves excellent mass resolution (σm ≤ 0.2 amu) for isotopes of Mg through K using a Si(Li) detector telescope. The second set of measurements, also made at the Lawrence Berkeley Laboratory Bevalac, using a beam of 583 MeV/nucleon 56FeFe incident on a CH2 target, resolved Cr, Mn, and Fe fragments with a typical mass resolution of ~ 0.25 amu, through the use of the Heavy Isotope Spectrometer Telescope (HIST) which was later carried into space on ISEE-3 in 1978. The general agreement between calculation and experiment is good, but some significant differences are reported here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.