10 resultados para Toric Varieties
em CaltechTHESIS
Resumo:
In this thesis we study Galois representations corresponding to abelian varieties with certain reduction conditions. We show that these conditions force the image of the representations to be "big," so that the Mumford-Tate conjecture (:= MT) holds. We also prove that the set of abelian varieties satisfying these conditions is dense in a corresponding moduli space.
The main results of the thesis are the following two theorems.
Theorem A: Let A be an absolutely simple abelian variety, End° (A) = k : imaginary quadratic field, g = dim(A). Assume either dim(A) ≤ 4, or A has bad reduction at some prime ϕ, with the dimension of the toric part of the reduction equal to 2r, and gcd(r,g) = 1, and (r,g) ≠ (15,56) or (m -1, m(m+1)/2). Then MT holds.
Theorem B: Let M be the moduli space of abelian varieties with fixed polarization, level structure and a k-action. It is defined over a number field F. The subset of M(Q) corresponding to absolutely simple abelian varieties with a prescribed stable reduction at a large enough prime ϕ of F is dense in M(C) in the complex topology. In particular, the set of simple abelian varieties having bad reductions with fixed dimension of the toric parts is dense.
Besides this we also established the following results:
(1) MT holds for some other classes of abelian varieties with similar reduction conditions. For example, if A is an abelian variety with End° (A) = Q and the dimension of the toric part of its reduction is prime to dim( A), then MT holds.
(2) MT holds for Ribet-type abelian varieties.
(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds.
(4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5.0(2)) and some 4-folds of type I.
(5) For some abelian varieties either MT or the Hodge conjecture holds.
Resumo:
A variety (equational class) of lattices is said to be finitely based if there exists a finite set of identities defining the variety. Let M∞n denote the lattice variety generated by all modular lattices of width not exceeding n. M∞1 and M∞2 are both the class of all distributive lattices and consequently finitely based. B. Jónsson has shown that M∞3 is also finitely based. On the other hand, K. Baker has shown that M∞n is not finitely based for 5 ≤ n ˂ ω. This thesis settles the finite basis problem for M∞4. M∞4 is shown to be finitely based by proving the stronger result that there exist ten varieties which properly contain M∞4 and such that any variety which properly contains M∞4 contains one of these ten varieties.
The methods developed also yield a characterization of sub-directly irreducible width four modular lattices. From this characterization further results are derived. It is shown that the free M∞4 lattice with n generators is finite. A variety with exactly k covers is exhibited for all k ≥ 15. It is further shown that there are 2Ӄo sub- varieties of M∞4.
Resumo:
The goal of this thesis is to develop a proper microelectromechanical systems (MEMS) process to manufacture piezoelectric Parylene-C (PA-C), which is famous for its chemical inertness, mechanical and thermal properties and electrical insulation. Furthermore, piezoelectric PA-C is used to build miniature, inexpensive, non-biased piezoelectric microphones.
These piezoelectric PA-C MEMS microphones are to be used in any application where a conventional piezoelectric and electret microphone can be used, such as in cell phones and hearing aids. However, they have the advantage of a simplified fabrication process compared with existing technology. In addition, as a piezoelectric polymer, PA-C has varieties of applications due to its low dielectric constant, low elastic stiffness, low density, high voltage sensitivity, high temperature stability and low acoustic and mechanical impedance. Furthermore, PA-C is an FDA approved biocompatible material and is able to maintain operate at a high temperature.
To accomplish piezoelectric PA-C, a MEMS-compatible poling technology has been developed. The PA-C film is poled by applying electrical field during heating. The piezoelectric coefficient, -3.75pC/N, is obtained without film stretching.
The millimeter-scale piezoelectric PA-C microphone is fabricated with an in-plane spiral arrangement of two electrodes. The dynamic range is from less than 30 dB to above 110 dB SPL (referenced 20 µPa) and the open-circuit sensitivities are from 0.001 – 0.11 mV/Pa over a frequency range of 1 - 10 kHz. The total harmonic distortion of the device is less than 20% at 110 dB SPL and 1 kHz.
Resumo:
We present a novel account of the theory of commutative spectral triples and their two closest noncommutative generalisations, almost-commutative spectral triples and toric noncommutative manifolds, with a focus on reconstruction theorems, viz, abstract, functional-analytic characterisations of global-analytically defined classes of spectral triples. We begin by reinterpreting Connes's reconstruction theorem for commutative spectral triples as a complete noncommutative-geometric characterisation of Dirac-type operators on compact oriented Riemannian manifolds, and in the process clarify folklore concerning stability of properties of spectral triples under suitable perturbation of the Dirac operator. Next, we apply this reinterpretation of the commutative reconstruction theorem to obtain a reconstruction theorem for almost-commutative spectral triples. In particular, we propose a revised, manifestly global-analytic definition of almost-commutative spectral triple, and, as an application of this global-analytic perspective, obtain a general result relating the spectral action on the total space of a finite normal compact oriented Riemannian cover to that on the base space. Throughout, we discuss the relevant refinements of these definitions and results to the case of real commutative and almost-commutative spectral triples. Finally, we outline progess towards a reconstruction theorem for toric noncommutative manifolds.
Resumo:
For a toric Del Pezzo surface S, a new instance of mirror symmetry, said relative, is introduced and developed. On the A-model, this relative mirror symmetry conjecture concerns genus 0 relative Gromov-Witten of maximal tangency of S. These correspond, on the B-model, to relative periods of the mirror to S. Furthermore, for S not necessarily toric, two conjectures for BPS state counts are related. It is proven that the integrality of BPS state counts of the total space of the canonical bundle on S implies the integrality for the relative BPS state counts of S. Finally, a prediction of homological mirror symmetry for the open complement is explored. The B-model prediction is calculated in all cases and matches the known A-model computation for the projective plane.
Resumo:
Number systems which satisfy part but not all of the postulates for a field are called subvarieties of a field. The purpose of this paper is the determination of as great as possible a number of such varieties by suitable definitions of the class of elements and of the two operations involved.
Two postulate systems are considered. The first gives rise to 284 varieties, instances of all of which are given for infinite classes of elements, and of all except three for finite classes.
Of the 8192 combinations of postulates arising from the second system, not more than 1146 can be consistent. Instances are given of 1054 of these. As the postulates of this system are not independent, no conclusion has been reached regarding the remaining cases.
Resumo:
On the materials scale, thermoelectric efficiency is defined by the dimensionless figure of merit zT. This value is made up of three material components in the form zT = Tα2/ρκ, where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the total thermal conductivity. Therefore, in order to improve zT would require the reduction of κ and ρ while increasing α. However due to the inter-relation of the electrical and thermal properties of materials, typical routes to thermoelectric enhancement come in one of two forms. The first is to isolate the electronic properties and increase α without negatively affecting ρ. Techniques like electron filtering, quantum confinement, and density of states distortions have been proposed to enhance the Seebeck coefficient in thermoelectric materials. However, it has been difficult to prove the efficacy of these techniques. More recently efforts to manipulate the band degeneracy in semiconductors has been explored as a means to enhance α.
The other route to thermoelectric enhancement is through minimizing the thermal conductivity, κ. More specifically, thermal conductivity can be broken into two parts, an electronic and lattice term, κe and κl respectively. From a functional materials standpoint, the reduction in lattice thermal conductivity should have a minimal effect on the electronic properties. Most routes incorporate techniques that focus on the reduction of the lattice thermal conductivity. The components that make up κl (κl = 1/3Cνl) are the heat capacity (C), phonon group velocity (ν), and phonon mean free path (l). Since the difficulty is extreme in altering the heat capacity and group velocity, the phonon mean free path is most often the source of reduction.
Past routes to decreasing the phonon mean free path has been by alloying and grain size reduction. However, in these techniques the electron mobility is often negatively affected because in alloying any perturbation to the periodic potential can cause additional adverse carrier scattering. Grain size reduction has been another successful route to enhancing zT because of the significant difference in electron and phonon mean free paths. However, grain size reduction is erratic in anisotropic materials due to the orientation dependent transport properties. However, microstructure formation in both equilibrium and nonequilibrium processing routines can be used to effectively reduce the phonon mean free path as a route to enhance the figure of merit.
This work starts with a discussion of several different deliberate microstructure varieties. Control of the morphology and finally structure size and spacing is discussed at length. Since the material example used throughout this thesis is anisotropic a short primer on zone melting is presented as an effective route to growing homogeneous and oriented polycrystalline material. The resulting microstructure formation and control is presented specifically in the case of In2Te3-Bi2Te3 composites and the transport properties pertinent to thermoelectric materials is presented. Finally, the transport and discussion of iodine doped Bi2Te3 is presented as a re-evaluation of the literature data and what is known today.
Resumo:
This thesis consists of two independent chapters. The first chapter deals with universal algebra. It is shown, in von Neumann-Bernays-Gӧdel set theory, that free images of partial algebras exist in arbitrary varieties. It follows from this, as set-complete Boolean algebras form a variety, that there exist free set-complete Boolean algebras on any class of generators. This appears to contradict a well-known result of A. Hales and H. Gaifman, stating that there is no complete Boolean algebra on any infinite set of generators. However, it does not, as the algebras constructed in this chapter are allowed to be proper classes. The second chapter deals with positive elementary inductions. It is shown that, in any reasonable structure ᶆ, the inductive closure ordinal of ᶆ is admissible, by showing it is equal to an ordinal measuring the saturation of ᶆ. This is also used to show that non-recursively saturated models of the theories ACF, RCF, and DCF have inductive closure ordinals greater than ω.
Resumo:
The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases.
Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of "integer" (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases.
Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30 years ago, it can still produce novel phenomena. Of much recent interest is the existence of non-Abelian anyons in FQHE systems. Though it is possible to construct wave functions that realize such particles, whether these wavefunctions are the ground state is a difficult quantitative question that must be answered numerically. In this thesis I describe progress using a density-matrix renormalization group algorithm to study a bilayer system thought to host non-Abelian anyons. We find phase diagrams in terms of experimentally relevant parameters, and also find evidence for a non-Abelian phase known as the "interlayer Pfaffian".
Resumo:
Surface mass loads come in many different varieties, including the oceans, atmosphere, rivers, lakes, glaciers, ice caps, and snow fields. The loads migrate over Earth's surface on time scales that range from less than a day to many thousand years. The weights of the shifting loads exert normal forces on Earth's surface. Since the Earth is not perfectly rigid, the applied pressure deforms the shape of the solid Earth in a manner controlled by the material properties of Earth's interior. One of the most prominent types of surface mass loading, ocean tidal loading (OTL), comes from the periodic rise and fall in sea-surface height due to the gravitational influence of celestial objects, such as the moon and sun. Depending on geographic location, the surface displacements induced by OTL typically range from millimeters to several centimeters in amplitude, which may be inferred from Global Navigation and Satellite System (GNSS) measurements with sub-millimeter precision. Spatiotemporal characteristics of observed OTL-induced surface displacements may therefore be exploited to probe Earth structure. In this thesis, I present descriptions of contemporary observational and modeling techniques used to explore Earth's deformation response to OTL and other varieties of surface mass loading. With the aim to extract information about Earth's density and elastic structure from observations of the response to OTL, I investigate the sensitivity of OTL-induced surface displacements to perturbations in the material structure. As a case study, I compute and compare the observed and predicted OTL-induced surface displacements for a network of GNSS receivers across South America. The residuals in three distinct and dominant tidal bands are sub-millimeter in amplitude, indicating that modern ocean-tide and elastic-Earth models well predict the observed displacement response in that region. Nevertheless, the sub-millimeter residuals exhibit regional spatial coherency that cannot be explained entirely by random observational uncertainties and that suggests deficiencies in the forward-model assumptions. In particular, the discrepancies may reveal sensitivities to deviations from spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth structure due to the presence of the South American craton.