20 resultados para Titanium citrate solutions
em CaltechTHESIS
Resumo:
Adsorption of aqueous Pb(II) and Cu(II) on α-quartz was studied as a function of time, system surface area, and chemical speciation. Experimental systems contained sodium as a major cation, hydroxide, carbonate, and chloride as major anions, and covered the pH range 4 to 8. In some cases citrate and EDTA were added as representative organic complexing agents. The adsorption equilibria were reached quickly, regardless of the system surface area. The positions of the adsorption equilibria were found to be strongly dependent on pH, ionic strength and concentration of citrate and EDTA. The addition of these non-adsorbing ligands resulted in a competition between chelation and adsorption. The experimental work also included the examination of the adsorption behavior of the doubly charged major cations Ca(II) and Mg(II) as a function of pH.
The theoretical description of the experimental systems was obtained by means of chemical equilibrium-plus-adsorption computations using two adsorption models: one mainly electrostatic (the James-Healy Model), and the other mainly chemical (the Ion Exchange-Surface Complex Formation Model). Comparisons were made between these two models.
The main difficulty in the theoretical predictions of the adsorption behavior of Cu(II) was the lack of the reliable data for the second hydrolysis constant(*β_2) The choice of the constant was made on the basis of potentiometric titratlons of Cu^(2+)
The experimental data obtained and the resulting theoretical observations were applied in models of the chemical behavior of trace metals in fresh oxic waters, with emphasis on Pb(II) and Cu(II).
Resumo:
The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.
The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.
Resumo:
Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.
The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.
The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.
Resumo:
A method for determining by inspection the stability or instability of any solution u(t,x) = ɸ(x-ct) of any smooth equation of the form u_t = f(u_(xx),u_x,u where ∂/∂a f(a,b,c) > 0 for all arguments a,b,c, is developed. The connection between the mean wavespeed of solutions u(t,x) and their initial conditions u(0,x) is also explored. The mean wavespeed results and some of the stability results are then extended to include equations which contain integrals and also to include some special systems of equations. The results are applied to several physical examples.
Resumo:
In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.
Resumo:
Some aspects of wave propagation in thin elastic shells are considered. The governing equations are derived by a method which makes their relationship to the exact equations of linear elasticity quite clear. Finite wave propagation speeds are ensured by the inclusion of the appropriate physical effects.
The problem of a constant pressure front moving with constant velocity along a semi-infinite circular cylindrical shell is studied. The behavior of the solution immediately under the leading wave is found, as well as the short time solution behind the characteristic wavefronts. The main long time disturbance is found to travel with the velocity of very long longitudinal waves in a bar and an expression for this part of the solution is given.
When a constant moment is applied to the lip of an open spherical shell, there is an interesting effect due to the focusing of the waves. This phenomenon is studied and an expression is derived for the wavefront behavior for the first passage of the leading wave and its first reflection.
For the two problems mentioned, the method used involves reducing the governing partial differential equations to ordinary differential equations by means of a Laplace transform in time. The information sought is then extracted by doing the appropriate asymptotic expansion with the Laplace variable as parameter.
Resumo:
One of the critical problems currently being faced by agriculture industry in developing nations is the alarming rate of groundwater depletion. Irrigation accounts for over 70% of the total groundwater withdrawn everyday. Compounding this issue is the use of polluting diesel generators to pump groundwater for irrigation. This has made irrigation not only the biggest consumer of groundwater but also one of the major contributors to green house gases. The aim of this thesis is to present a solution to the energy-water nexus. To make agriculture less dependent on fossil fuels, the use of a solar-powered Stirling engine as the power generator for on-farm energy needs is discussed. The Stirling cycle is revisited and practical and ideal Stirling cycles are compared. Based on agricultural needs and financial constraints faced by farmers in developing countries, the use of a Fresnel lens as a solar-concentrator and a Beta-type Stirling engine unit is suggested for sustainable power generation on the farms. To reduce the groundwater consumption and to make irrigation more sustainable, the conceptual idea of using a Stirling engine in drip irrigation is presented. To tackle the shortage of over 37 million tonnes of cold-storage in India, the idea of cost-effective solar-powered on-farm cold storage unit is discussed.
Resumo:
The synthesis and X-ray diffraction study of bis(pentamethylcyclopentadienyl) ethylene titanium (I) are reported. This complex represents the first example of an isolable ethylene adduct of a group IV metal, a key intermediate in Ziegler-Natta olefin polymerization schemes. While treatment of I with ethylene leads to only traces of polymer after months, I participates in a wide range of stoichiometric and catalytic reactions. These include the catalytic conversion of ethylene specifically to butadiene and ethane and the catalytic isomerization of alkenes. Detailed studies have been carried out on the stoichiometric reactions of I with nitriles and alkynes. At low temperatures, nitriles react to form metallacycloimine species which more slowly undergo a formal 1,3-hydrogen shift to generate metallacycloeneamines. The lowest energy pathway for this rearrangement is an intramolecular hydrogen shift which is sensitive to the steric bulk of the R substituent. The reactions of I with alkynes yield metallacyclopentene complexes with high regioisomer selectivity. Carbonylation of the metallacyclopentene (η-C5Me55)2TiC(CH3)=C(CH3)CH2 under relatively mild conditions cleanly produces the corresponding cyclopentenone and [C5(CH3)5]2Ti(CO)2. Compounds derived from CO2 and acetaldehyde have also been isolated.
The synthesis and characterization of bis-(η-pentamethylcyclopentadienyl) niobium(III) tetrahydroborate (II) are described and a study of its temperature-dependent proton NMR spectroscopic behavior is reported. The complex is observed to undergo a rapid intramolecular averaging process at elevated temperatures. The free energy of activation, ΔG≠ = 16.4 ± 0.4 kcal/mol, is calculated. The reinvestigation of a related compound, bis(η-cyclopentadienyl)niobium(III) tetrahydroborate, established ΔG≠ = 14.6 ± 0.2 kcal/mol for the hydrogen exchange process. The tetrahydroborate complex, II reacts with pyridine and dihydrogen to yield (η-C5Me55)2NbH3 (III). The reactivity of III with CO and ethylene is reported.
Resumo:
This work concerns itself with the possibility of solutions, both cooperative and market based, to pollution abatement problems. In particular, we are interested in pollutant emissions in Southern California and possible solutions to the abatement problems enumerated in the 1990 Clean Air Act. A tradable pollution permit program has been implemented to reduce emissions, creating property rights associated with various pollutants.
Before we discuss the performance of market-based solutions to LA's pollution woes, we consider the existence of cooperative solutions. In Chapter 2, we examine pollutant emissions as a trans boundary public bad. We show that for a class of environments in which pollution moves in a bi-directional, acyclic manner, there exists a sustainable coalition structure and associated levels of emissions. We do so via a new core concept, one more appropriate to modeling cooperative emissions agreements (and potential defection from them) than the standard definitions.
However, this leaves the question of implementing pollution abatement programs unanswered. While the existence of a cost-effective permit market equilibrium has long been understood, the implementation of such programs has been difficult. The design of Los Angeles' REgional CLean Air Incentives Market (RECLAIM) alleviated some of the implementation problems, and in part exacerbated them. For example, it created two overlapping cycles of permits and two zones of permits for different geographic regions. While these design features create a market that allows some measure of regulatory control, they establish a very difficult trading environment with the potential for inefficiency arising from the transactions costs enumerated above and the illiquidity induced by the myriad assets and relatively few participants in this market.
It was with these concerns in mind that the ACE market (Automated Credit Exchange) was designed. The ACE market utilizes an iterated combined-value call market (CV Market). Before discussing the performance of the RECLAIM program in general and the ACE mechanism in particular, we test experimentally whether a portfolio trading mechanism can overcome market illiquidity. Chapter 3 experimentally demonstrates the ability of a portfolio trading mechanism to overcome portfolio rebalancing problems, thereby inducing sufficient liquidity for markets to fully equilibrate.
With experimental evidence in hand, we consider the CV Market's performance in the real world. We find that as the allocation of permits reduces to the level of historical emissions, prices are increasing. As of April of this year, prices are roughly equal to the cost of the Best Available Control Technology (BACT). This took longer than expected, due both to tendencies to mis-report emissions under the old regime, and abatement technology advances encouraged by the program. Vve also find that the ACE market provides liquidity where needed to encourage long-term planning on behalf of polluting facilities.
Resumo:
An electrostatic mechanism for the flocculation of charged particles by polyelectrolytes of opposite charge is proposed. The difference between this and previous electrostatic coagulation mechanisms is the formation of charged polyion patches on the oppositely charged surfaces. The size of a patch is primarily a function of polymer molecular weight and the total patch area is a function of the amount of polymer adsorbed. The theoretical predictions of the model agree with the experimental dependence of the polymer dose required for flocculation on polymer molecular weight and solution ionic strength.
A theoretical analysis based on the Derjaguin-Landau, Verwey- Overbeek electrical double layer theory and statistical mechanical treatments of adsorbed polymer configurations indicates that flocculation of charged particles in aqueous solutions by polyelectrolytes of opposite charge does not occur by the commonly accepted polymerbridge mechanism.
A series of 1, 2-dimethyl-5 -vinylpyridinium bromide polymers with a molecular weight range of 6x10^3 to 5x10^6 was synthesized and used to flocculate dilute polystyrene latex and silica suspensions in solutions of various ionic strengths. It was found that with high molecular weight polymers and/or high ionic strengths the polymer dose required for flocculation is independent of molecular weight. With low molecular weights and/or low ionic strengths, the flocculation dose decreases with increasing molecular weight.
Resumo:
Conduction through TiO2 films of thickness 100 to 450 Å have been investigated. The samples were prepared by either anodization of Ti evaporation of TiO2, with Au or Al evaporated for contacts. The anodized samples exhibited considerable hysteresis due to electrical forming, however it was possible to avoid this problem with the evaporated samples from which complete sets of experimental results were obtained and used in the analysis. Electrical measurements included: the dependence of current and capacitance on dc voltage and temperature; the dependence of capacitance and conductance on frequency and temperature; and transient measurements of current and capacitance. A thick (3000 Å) evaporated TiO2 film was used for measuring the dielectric constant (27.5) and the optical dispersion, the latter being similar to that for rutile. An electron transmission diffraction pattern of a evaporated film indicated an essentially amorphous structure with a short range order that could be related to rutile. Photoresponse measurements indicated the same band gap of about 3 ev for anodized and evaporated films and reduced rutile crystals and gave the barrier energies at the contacts.
The results are interpreted in a self consistent manner by considering the effect of a large impurity concentration in the films and a correspondingly large ionic space charge. The resulting potential profile in the oxide film leads to a thermally assisted tunneling process between the contacts and the interior of the oxide. A general relation is derived for the steady state current through structures of this kind. This in turn is expressed quantitatively for each of two possible limiting types of impurity distributions, where one type gives barriers of an exponential shape and leads to quantitative predictions in c lose agreement with the experimental results. For films somewhat greater than 100 Å, the theory is formulated essentially in terms of only the independently measured barrier energies and a characteristic parameter of the oxide that depends primarily on the maximum impurity concentration at the contacts. A single value of this parameter gives consistent agreement with the experimentally observed dependence of both current and capacitance on dc voltage and temperature, with the maximum impurity concentration found to be approximately the saturation concentration quoted for rutile. This explains the relative insensitivity of the electrical properties of the films on the exact conditions of formation.
Resumo:
Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.
Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.
However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.
Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.
Resumo:
Consider the Royden compactification R* of a Riemannian n-manifold R, Γ = R*\R its Royden boundary, Δ its harmonic boundary and the elliptic differential equation Δu = Pu, P ≥ 0 on R. A regular Borel measure mP can be constructed on Γ with support equal to the closure of ΔP = {q ϵ Δ : q has a neighborhood U in R* with UʃᴖRP ˂ ∞ }. Every enegy-finite solution to u (i.e. E(u) = D(u) + ʃRu2P ˂ ∞, where D(u) is the Dirichlet integral of u) can be represented by u(z) = ʃΓu(q)K(z,q)dmP(q) where K(z,q) is a continuous function on Rx Γ . A P~E-function is a nonnegative solution which is the infimum of a downward directed family of energy-finite solutions. A nonzero P~E-function is called P~E-minimal if it is a constant multiple of every nonzero P~E-function dominated by it. THEOREM. There exists a P~E-minimal function if and only if there exists a point in q ϵ Γ such that mP(q) > 0. THEOREM. For q ϵ ΔP , mP(q) > 0 if and only if m0(q) > 0 .
Resumo:
Part I
Chapter 1.....A physicochemical study of the DNA molecules from the three bacteriophages, N1, N5, and N6, which infect the bacterium, M. lysodeikticus, has been made. The molecular weights, as measured by both electron microscopy and sedimentation velocity, are 23 x 106 for N5 DNA and 31 x 106 for N1 and N6 DNA's. All three DNA's are capable of thermally reversible cyclization. N1 and N6 DNA's have identical or very similar base sequences as judged by membrane filter hybridization and by electron microscope heteroduplex studies. They have identical or similar cohesive ends. These results are in accord with the close biological relation between N1 and N6 phages. N5 DNA is not closely related to N1 or N6 DNA. The denaturation Tm of all three DNA's is the same and corresponds to a (GC) content of 70%. However, the buoyant densities in CsCl of Nl and N6 DNA's are lower than expected, corresponding to predicted GC contents of 64 and 67%. The buoyant densities in Cs2SO4 are also somewhat anomalous. The buoyant density anomalies are probably due to the presence of odd bases. However, direct base composition analysis of N1 DNA by anion exchange chromatography confirms a GC content of 70%, and, in the elution system used, no peaks due to odd bases are present.
Chapter 2.....A covalently closed circular DNA form has been observed as an intracellular form during both productive and abortive infection processes in M. lysodeikticus. This species has been isolated by the method of CsC1-ethidium bromide centrifugation and examined with an electron microscope.
Chapter 3.....A minute circular DNA has been discovered as a homogeneous population in M. lysodeikticus. Its length and molecular weight as determined by electron microscopy are 0.445 μ and 0.88 x 106 daltons respectively. There is about one minicircle per bacterium.
Chapter 4.....Several strains of E. coli 15 harbor a prophage. Viral growth can be induced by exposing the host to mitomycin C or to uv irradiation. The coliphage 15 particles from E. coli 15 and E, coli 15 T- appear as normal phage with head and tail structure; the particles from E. coli 15 TAU are tailless. The complete particles exert a colicinogenic activity on E.coli 15 and 15 T-, the tailless particles do not. No host for a productive viral infection has been found and the phage may be defective. The properties of the DNA of the virus have been studied, mainly by electron microscopy. After induction but before lysis, a closed circular DNA with a contour length of about 11.9 μ is found in the bacterium; the mature phage DNA is a linear duplex and 7.5% longer than the intracellular circular form. This suggests the hypothesis that the mature phage DNA is terminally repetitious and circularly permuted. The hypothesis was confirmed by observing that denaturation and renaturation of the mature phage DNA produce circular duplexes with two single-stranded branches corresponding to the terminal repetition. The contour length of the mature phage DNA was measured relative to φX RFII DNA and λ DNA; the calculated molecular weight is 27 x 106. The length of the single-stranded terminal repetition was compared to the length of φX 174 DNA under conditions where single-stranded DNA is seen in an extended form in electron micrographs. The length of the terminal repetition is found to be 7.4% of the length of the nonrepetitious part of the coliphage 15 DNA. The number of base pairs in the terminal repetition is variable in different molecules, with a fractional standard deviation of 0.18 of the average number in the terminal repetition. A new phenomenon termed "branch migration" has been discovered in renatured circular molecules; it results in forked branches, with two emerging single strands, at the position of the terminal repetition. The distribution of branch separations between the two terminal repetitions in the population of renatured circular molecules was studied. The observed distribution suggests that there is an excluded volume effect in the renaturation of a population of circularly permuted molecules such that strands with close beginning points preferentially renature with each other. This selective renaturation and the phenomenon of branch migration both affect the distribution of branch separations; the observed distribution does not contradict the hypothesis of a random distribution of beginning points around the chromosome.
Chapter 5....Some physicochemical studies on the minicircular DNA species in E. coli 15 (0.670 μ, 1.47 x 106 daltons) have been made. Electron microscopic observations showed multimeric forms of the minicircle which amount to 5% of total DNA species and also showed presumably replicating forms of the minicircle. A renaturation kinetic study showed that the minicircle is a unique DNA species in its size and base sequence. A study on the minicircle replication has been made under condition in which host DNA synthesis is synchronized. Despite experimental uncertainties involved, it seems that the minicircle replication is random and the number of the minicircles increases continuously throughout a generation of the host, regardless of host DNA synchronization.
Part II
The flow dichroism of dilute DNA solutions (A260≈0.1) has been studied in a Couette-type apparatus with the outer cylinder rotating and with the light path parallel to the cylinder axis. Shear gradients in the range of 5-160 sec.-1 were studied. The DNA samples were whole, "half," and "quarter" molecules of T4 bacteriophage DNA, and linear and circular λb2b5c DNA. For the linear molecules, the fractional flow dichroism is a linear function of molecular weight. The dichroism for linear A DNA is about 1.8 that of the circular molecule. For a given DNA, the dichroism is an approximately linear function of shear gradient, but with a slight upward curvature at low values of G, and some trend toward saturation at larger values of G. The fractional dichroism increases as the supporting electrolyte concentration decreases.
Resumo:
Picric acid possesses the property, which is rare among strong electrolytes, of having a convenient distribution ratio between water and certain organic solvents such as benzene, chloroform, etc. Because of this property, picric acid offers peculiar advantages for studying the well known deviations of strong electrolytes from the law of mass action, for; by means of distribution experiments, the activities of picric acid in various aqueous solutions may be compared.
In order to interpret the results of such distribution experiments, it is necessary to know the degree of ionization of picric acid in aqueous solutions.
At least three series of determinations of the equivalent conductance of picric acid have been published, but the results are not concordant; and therefore, the degree of ionization cannot be calculated with any degree of certainty.
The object of the present investigation was to redetermine the conductance of picric acid solutions in order to obtain satisfactory data from which the degrees of ionization of its solutions might be calculated.