2 resultados para Tiled ring

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis discusses two major topics: the ring-opening metathesis polymerization (ROMP) of bulky monomers and the radical-mediated hydrophosphonation of olefins. The research into the ROMP of bulky monomers is further divided into three chapters: wedge-shaped monomers, the alternating copolymerization of 1-methyloxanorbornene derivatives with cyclooctene, and the kinetic resolution polymerization of 1-methyloxanorbornene derivatives. The wedge-shaped monomers can be polymerized into diblock copolymers that possess photonic crystal properties. The alternating copolymerization of 1-methyloxanorbornene derivatives with cyclooctene is performed with > 90% alternation via two different routes: typical alternating copolymerization and a sequence editing approach. The kinetic resolution polymerization of these same 1-methyloxanorbornene monomers achieves only modest selectivity (S=4), but there is evidence that the growing polymer chain forms a helix that influences the selectivity of the resolution. The last topic is the radical-mediated hydrophosphonation of olefins. This synthetic method provides access to Wittig reagents that are capable of highly cis-selective olefinations of aldehydes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past workers in this group as well as in others have made considerable progress in the understanding and development of the ring-opening metathesis polymerization (ROMP) technique. Through these efforts, ROMP chemistry has become something of an organometallic success story. Extensive work was devoted to trying to identify the catalytically active species in classical reaction mixtures of early metal halides and alkyl aluminum compounds. Through this work, a mechanism involving the interconversion of metal carbenes and metallacyclobutanes was proposed. This preliminary work finally led to the isolation and characterization of stable metal carbene and metallacyclobutane complexes. As anticipated, these well-characterized complexes were shown to be active catalysts. In a select number of cases, these catalysts have been shown to catalyze the living polymerization of strained rings such as norbornene. The synthetic control offered by these living systems places them in a unique category of metal catalyzed reactions. To take full advantage of these new catalysts, two approaches should be explored. The first takes advantage of the unusual fact that all of the unsaturation present in the monomer is conserved in the polymer product. This makes ROMP techniques ideal for the synthesis of highly unsaturated, and fully conjugated polymers, which find uses in a variety of applications. This area is currently under intense investigation. The second aspect, which should lend itself to fruitful investigations, is expanding the utility of these catalysts through the living polymerization of monomers containing interesting functional groups. Polymer properties can be dramatically altered by the incorporation of functional groups. It is this latter aspect which will be addressed in this work.

After a general introduction to both the ring-opening metathesis reaction (Chapter 1) and the polymerization of fuctionalized monomers by transition metal catalysts (Chapter 2), the limits of the existing living ROMP catalysts with functionalized monomers are examined in Chapter 3. Because of the stringent limitations of these early metal catalysts, efforts were focused on catalysts based on ruthenium complexes. Although not living, and displaying unusually long induction periods, these catalysts show high promise for future investigations directed at the development of catalysts for the living polymerization of functionalized monomers. In an attempt to develop useful catalysts based on these ruthenium complexes, efforts to increase their initiation rates are presented in Chapter 4. This work eventually led to the discovery that these catalysts are highly active in aqueous solution, providing the opportunity to develop aqueous emulsion ROMP systems. Recycling the aqueous catalysts led to the discovery that the ruthenium complexes become more activated with use. Investigations of these recycled solutions uncovered new ruthenium-olefin complexes, which are implicated in the activation process. Although our original goal of developing living ROMP catalysts for the polymerization of fuctionalized monomers is yet to be realized, it is hoped that this work provides a foundation from which future investigations can be launched.

In the last chapter, the ionophoric properties of the poly(7-oxanobornene) materials is briefly discussed. Their limited use as acyclic host polymers led to investigations into the fabrication of ion-permeable membranes fashioned from these materials.