12 resultados para Tethered satellites.
em CaltechTHESIS
Resumo:
Flies are particularly adept at balancing the competing demands of delay tolerance, performance, and robustness during flight, which invites thoughtful examination of their multimodal feedback architecture. This dissertation examines stabilization requirements for inner-loop feedback strategies in the flapping flight of Drosophila, the fruit fly, against the backdrop of sensorimotor transformations present in the animal. Flies have evolved multiple specializations to reduce sensorimotor latency, but sensory delay during flight is still significant on the timescale of body dynamics. I explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically-scaled robot equipped with a real-time feedback system that performed active turns in response to measured yaw torque. The results show a fundamental tradeoff between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback provides a source of active damping that compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually-mediated feedback is consistent with tethered-flight measurements, free-flight observations, and engineering design principles. Additionally, I investigated how flies adjust stroke features to regulate and stabilize level forward flight. The results suggest that few changes to hovering kinematics are actually required to meet steady-state lift and thrust requirements at different flight speeds, and the primary driver of equilibrium velocity is the aerodynamic pitch moment. This finding is consistent with prior hypotheses and observations regarding the relationship between body pitch and flight speed in fruit flies. The results also show that the dynamics may be stabilized with additional pitch damping, but the magnitude of required damping increases with flight speed. I posit that differences in stroke deviation between the upstroke and downstroke might play a critical role in this stabilization. Fast mechanosensory feedback of the pitch rate could enable active damping, which would inherently exhibit gain scheduling with flight speed if pitch torque is regulated by adjusting stroke deviation. Such a control scheme would provide an elegant solution for flight stabilization across a wide range of flight speeds.
Resumo:
The aromatic core of double helical DNA possesses the unique and remarkable ability to form a conduit for electrons to travel over exceptionally long molecular distances. This core of π-stacked nucleobases creates an efficient pathway for charge transfer to proceed that is exquisitely sensitive to even subtle perturbations. Ground state electrochemistry of DNA-modified electrodes has been one of the major techniques used both to investigate and to harness the property of DNA-mediated charge transfer. DNA-modified electrodes have been an essential tool for both gaining insights into the fundamental properties of DNA and, due to the exquisite specificity of DNA-mediated charge transfer for the integrity of the π-stack, for use in next generation diagnostic sensing. Here, multiplexed DNA-modified electrodes are used to (i) gain new insights on the electrochemical coupling of metalloproteins to the DNA π-stack with relevance to the fundaments of in vivo DNA-mediated charge transfer and (ii) enhance the overall sensitivity of DNA-mediated reduction for use in the detection of low abundance diagnostic targets.
First, Methylene Blue (MB′) was covalently attached to DNA through a flexible C12 alkyl linker to yield a new redox reporter for DNA electrochemistry measurements with enhanced sensitivity. Tethered, intercalated MB′ was reduced through DNA-mediated charge transport. The redox signal intensity for MB′-dT-C12-DNA was found to be at least 3 fold larger than that of previously used Nile Blue (NB)-dT-DNA, which is coupled to the base stack via direct conjugation. The signal attenuation, due to an intervening mismatch, and therefore the degree of DNA-mediated reduction, does, however, depend on the DNA film morphology and the backfilling agent used to passivate the surface. These results highlight two possible mechanisms for the reduction of MB′ on the DNA-modified electrode that are distinguishable by their kinetics: reduction mediated by the DNA base pair stack and direct surface reduction of MB′ at the electrode. The extent of direct reduction at the surface can be minimized by overall DNA assembly conditions.
Next, a series of intercalation-based DNA-mediated electrochemical reporters were developed, using a flexible alkane linkage to validate and explore their DNA-mediated reduction. The general mechanism for the reduction of distally bound redox active species, covalently tethered to DNA through flexible alkyl linkages, was established to be an intraduplex DNA-mediated pathway. MB, NB, and anthraquinone were covalently tethered to DNA with three different covalent linkages. The extent of electronic coupling of the reporter was shown to correlate with the DNA binding affinity of the redox active species, supporting an intercalative mechanism. These electrochemical signals were shown to be exceptionally sensitive to a single intervening π-stack perturbation, an AC mismatch, in a densely packed DNA monolayer, which further supports that the reduction is DNA-mediated. Finally, this DNA-mediated reduction of MB occurs primarily via intra- rather than inter duplex intercalation, as probed through varying the proximity and integrity of the neighboring duplex DNA. Further gains to electrochemical sensitivity of our DNA-modified devices were then achieved through the application of electrocatalytic signal amplification using these solvent accessible intercalative reporters, MB-dT-C8, and hemoglobin as a novel electron sink. Electrocatalysis offers an excellent means of electrochemical signal amplification, yet in DNA based sensors, its application has been limited due to strict assembly conditions. We describe the use of hemoglobin as a robust and effective electron sink for electrocatalysis in DNA sensing on low density DNA films. Protein shielding of the heme redox center minimizes direct reduction at the electrode surface and permits assays on low density DNA films. Electrocatalysis of MB that is covalently tethered to the DNA by a flexible alkyl linkage allows for efficient interactions with both the base stack and hemoglobin. Consistent suppression of the redox signal upon incorporation of single CA mismatch in the DNA oligomer demonstrates that both the unamplified and the electrocatalytically amplified redox signals are generated through DNA-mediated charge transport. Electrocatalysis with hemoglobin is robust: it is stable to pH and temperature variations. The utility and applicability of electrocatalysis with hemoglobin is demonstrated through restriction enzyme detection, and an enhancement in sensitivity permits femtomole DNA sampling.
Finally, we expanded the application of our multiplexed DNA-modified electrodes to the electrochemical characterization of DNA-bound proteins containing [4Fe-4S] clusters. DNA-modified electrodes have become an essential tool for the characterization of the redox chemistry of DNA repair proteins that contain redox cofactors. Multiplexed analysis of EndonucleaseIII (EndoIII), a DNA repair protein containing a [4Fe-4S] cluster known to be accessible via DNA-mediated charge transport, elucidated subtle differences in the electrochemical behavior as a function of DNA morphology. DNA-bound EndoIII is seen to have two different electron transfer pathways for reduction, either through the DNA base stack or through direct surface reduction. Closely packed DNA films, where the protein has limited surface accessibility, produce electrochemical signals reflecting electron transfer that is DNA-mediated. The electrochemical comparison of EndoIII mutants, including a new family of mutations altering the electrostatics surrounding the [4Fe-4S] cluster, was able to be quantitatively performed. While little change in the midpoint potential was found for this family of mutants, significant variations in the efficiency of DNA-mediated electron transfer were apparent. Based on the stability of these proteins, examined by circular dichroism, we propose that the electron transfer pathway can be perturbed not only by the removal of aromatic residues, but also through changes in solvation near the cluster.
Resumo:
Using density functional theory, we studied the fundamental steps of olefin polymerization for zwitterionic and cationic Group IV ansa-zirconocenes and a neutral ansa- yttrocene. Complexes [H2E(C5H4)2ZrMe]n (n = 0: E = BH2 (1), BF2 (2), AlH2(3); n = +: E = CH2(4), SiH2(5)) and H2Si(C5H4)2YMe were used as computational models. The largest differences among these three classes of compounds were the strength of olefin binding and the stability of the β-agostic alkyl intermediate towards β-hydrogen elimination. We investigated the effect of solvent on the reaction energetics for land 5. We found that in benzene the energetics became very similar except that a higher olefin insertion barrier was calculated for 1. The calculated anion affinity of [CH3BF3]- was weaker towards 1 than 5. The calculated olefin binding depended primarily on the charge of the ansa linker, and the olefin insertion barrier was found to decrease steadily in the following order: [H2C(C5H4)2ZrMe]+ > [F2B(C5H4)2ZrMe] ≈ [H2B(C5H4)2ZrMe] > [H2Si(C5H4)2ZrMe]+ > [H2Al(C5H4)2ZrMe].
We prepared ansa-zirconocene dicarbonyl complexes Me2ECp2Zr(CO)2 (E = Si, C), and t-butyl substituted complexes (t-BuCp)2Zr(CO)2, Me2E(t-BuCp)2Zr(CO)2 (E = Si, C), (Me2Si)2(t-BuCp)2Zr(CO)2 as well as analogous zirconocene complexes. Both the reduction potentials and carbonyl stretching frequencies follow the same order: Me2SiCp2ZrCl2> Me2CCp2ZrCl2> Cp2ZrCl2> (Me2Si)2Cp2ZrCl2. This ordering is a result of both the donating abilities of the cyclopentadienyl substituents and the orientation of the cyclopentadiene rings. Additionally, we prepared a series of analogous cationic zirconocene complexes [LZrOCMe3][MeB(C6F5)3] (L = CP2, Me2SiCp2, Me2CCP2, (Me2Si)2Cp2) and studied the kinetics of anion dissociation. We found that the enthalpy of anion dissociation increased from 10.3 kcal•mol-1 to 17.6 kcal•mol-1 as exposure of the zirconium center increased.
We also prepared series of zirconocene complexes bearing 2,2-dimethyl-2-sila-4-pentenyl substituents (and methyl-substituted olefin variants). Methide abstraction with B(C6F5) results in reversible coordination of the tethered olefin to the cationic zirconium center. The kinetics of olefin dissociation have been examined using NMR methods, and the effects of ligand variation for unlinked, singly [SiMe2]-linked and doubly [SiMe2]-linked bis(cyclopentadienyl) arrangements has been compared (ΔG‡ for olefin dissociation varies from 12.8 to 15.6 kcal•mol-1). Methide abstraction from 1,2-(SiMe2)2(η5-C5H3)2Zr(CH3)-(CH2CMe2CH2CH = CH2) results in rapid β-allyl elimination with loss of isobutene yielding the allyl cation [{1,2-(SiMe2)2(η5-C5H3)2Zr(η3-CH2CH=CH2)]+.
Resumo:
Metal complexes that utilize the 9,10-phenanthrene quinone diimine (phi) moiety bind to DNA through the major groove. These metallointercalators can recognize DNA sites and perform reactions on DNA as a substrate. The site-specific metallointercalator Λ-1-Rh(MGP)_2phi^(5+) competitively disrupts the major groove binding of a transcription factor, yAP-1, from an oligonucleotide that contains a common binding site. The demonstration that metal complexes can prevent transcription factor binding to DNA site-specifically is an important step in using metallointercalators as therapeutics.
The distinctive photochemistry of metallointercalators can also be applied to promote long range charge transport in DNA. Experiments using duplexes with regions 4 to 10 nucleotides long containing strictly adenine and thymine sequences of varying order showed that radical migration is more dependent on the sequence of bases, and less dependent on the distance between the guanine doublets. This result suggests that mechanistic proposals of long range charge transport must involve all the bases.
RNA/DNA hybrids show charge migration to guanines from a remote site, thus demonstrating that nucleic acid stacking other than B-form can serve as a radical bridge. Double crossover DNA assemblies also provide a medium for charge transport at distances up to 100 Å from the site of radical introduction by a tethered metal complex. This radical migration was found to be robust to mismatches, and limited to individual, electronically distinct base stacks. In single DNA crossover assemblies, which have considerably greater flexibility, charge migration proceeds to both base stacks due to conformational isomers not present in the rigid and tightly annealed double crossovers.
Finally, a rapid, efficient, gel-based technique was developed to investigate thymine dimer repair. Two oligonucleotides, one radioactively labeled, are photoligated via the bases of a thymine-thymine interface; reversal of this ligation is easily visualized by gel electrophoresis. This assay was used to show that the repair of thymine dimers from a distance through DNA charge transport can be accomplished with different photooxidants.
Thus, nucleic acids that support long range charge transport have been shown to include A-track DNA, RNA/DNA hybrids, and single and double crossovers, and a method for thymine dimer repair detection using charge transport was developed. These observations underscore and extend the remarkable finding that DNA can serve a medium for charge transport via the heteroaromatic base stack.
Resumo:
The cytochromes P450 (P450s) are a remarkable class of heme enzymes that catalyze the metabolism of xenobiotics and the biosynthesis of signaling molecules. Controlled electron flow into the thiolate-ligated heme active site allows P450s to activate molecular oxygen and hydroxylate aliphatic C–H bonds via the formation of high-valent metal-oxo intermediates (compounds I and II). Due to the reactive nature and short lifetimes of these intermediates, many of the fundamental steps in catalysis have not been observed directly. The Gray group and others have developed photochemical methods, known as “flash-quench,” for triggering electron transfer (ET) and generating redox intermediates in proteins in the absence of native ET partners. Photo-triggering affords a high degree of temporal precision for the gating of an ET event; the initial ET and subsequent reactions can be monitored on the nanosecond-to-second timescale using transient absorption (TA) spectroscopies. Chapter 1 catalogues critical aspects of P450 structure and mechanism, including the native pathway for formation of compound I, and outlines the development of photochemical processes that can be used to artificially trigger ET in proteins. Chapters 2 and 3 describe the development of these photochemical methods to establish electronic communication between a photosensitizer and the buried P450 heme. Chapter 2 describes the design and characterization of a Ru-P450-BM3 conjugate containing a ruthenium photosensitizer covalently tethered to the P450 surface, and nanosecond-to-second kinetics of the photo-triggered ET event are presented. By analyzing data at multiple wavelengths, we have identified the formation of multiple ET intermediates, including the catalytically relevant compound II; this intermediate is generated by oxidation of a bound water molecule in the ferric resting state enzyme. The work in Chapter 3 probes the role of a tryptophan residue situated between the photosensitizer and heme in the aforementioned Ru-P450 BM3 conjugate. Replacement of this tryptophan with histidine does not perturb the P450 structure, yet it completely eliminates the ET reactivity described in Chapter 2. The presence of an analogous tryptophan in Ru-P450 CYP119 conjugates also is necessary for observing oxidative ET, but the yield of heme oxidation is lower. Chapter 4 offers a basic description of the theoretical underpinnings required to analyze ET. Single-step ET theory is first presented, followed by extensions to multistep ET: electron “hopping.” The generation of “hopping maps” and use of a hopping map program to analyze the rate advantage of hopping over single-step ET is described, beginning with an established rhenium-tryptophan-azurin hopping system. This ET analysis is then applied to the Ru-tryptophan-P450 systems described in Chapter 2; this strongly supports the presence of hopping in Ru-P450 conjugates. Chapter 5 explores the implementation of flash-quench and other phototriggered methods to examine the native reductive ET and gas binding events that activate molecular oxygen. In particular, TA kinetics that demonstrate heme reduction on the microsecond timescale for four Ru-P450 conjugates are presented. In addition, we implement laser flash-photolysis of P450 ferrous–CO to study the rates of CO rebinding in the thermophilic P450 CYP119 at variable temperature. Chapter 6 describes the development and implementation of air-sensitive potentiometric redox titrations to determine the solution reduction potentials of a series of P450 BM3 mutants, which were designed for non-native cyclopropanation of styrene in vivo. An important conclusion from this work is that substitution of the axial cysteine for serine shifts the wild type reduction potential positive by 130 mV, facilitating reduction by biological redox cofactors in the presence of poorly-bound substrates. While this mutation abolishes oxygenation activity, these mutants are capable of catalyzing the cyclopropanation of styrene, even within the confines of an E. coli cell. Four appendices are also provided, including photochemical heme oxidation in ruthenium-modified nitric oxide synthase (Appendix A), general protocols (Appendix B), Chapter-specific notes (Appendix C) and Matlab scripts used for data analysis (Appendix D).
Resumo:
Signal recognition particle (SRP) and signal recognition particle receptor (SR) are evolutionarily conserved GTPases that deliver secretory and membrane proteins to the protein-conducting channel Sec61 complex in the lipid bilayer of the endoplasmic reticulum in eukaryotes or the SecYEG complex in the inner membrane of bacteria. Unlike the canonical Ras-type GTPases, SRP and SR are activated via nucleotide-dependent heterodimerization. Upon formation of the SR•SRP targeting complex, SRP and SR undergo a series of discrete conformational changes that culminate in their reciprocal activation and hydrolysis of GTP. How the SR•SRP GTPase cycle is regulated and coupled to the delivery of the cargo protein to the protein-conducting channel at the target membrane is not well-understood. Here we examine the role of the lipid bilayer and SecYEG in regulation of the SRP-mediated protein targeting pathway and show that they serve as important biological cues that spatially control the targeting reaction.
In the first chapter, we show that anionic phospholipids of the inner membrane activate the bacterial SR, FtsY, and favor the late conformational states of the targeting complex conducive to efficient unloading of the cargo. The results of our studies suggest that the lipid bilayer acts as a spatial cue that weakens the interaction of the cargo protein with SRP and primes the complex for unloading its cargo onto SecYEG.
In the second chapter, we focus on the effect of SecYEG on the conformational states and activity of the targeting complex. While phospholipids prime the complex for unloading its cargo, they are insufficient to trigger hydrolysis of GTP and the release of the cargo from the complex. SecYEG modulates the conformation of the targeting complex and triggers the GTP hydrolysis from the complex, thus driving the targeting reaction to completion. The results of this study suggest that SecYEG is not a passive recipient of the cargo protein; rather, it actively releases the cargo from the targeting complex. Together, anionic phospholipids and SecYEG serve distinct yet complementary roles. They spatially control the targeting reaction in a sequential manner, ensuring efficient delivery and unloading of the cargo protein.
In the third chapter, we reconstitute the transfer reaction in vitro and visualize it in real time. We show that the ribosome-nascent chain complex is transferred to SecYEG via a stepwise mechanism with gradual dissolution and formation of the contacts with SRP and SecYEG, respectively, explaining how the cargo is kept tethered to the membrane during the transfer and how its loss to the cytosol is avoided.
In the fourth chapter, we examine interaction of SecYEG with secretory and membrane proteins and attempt to address the role of a novel insertase YidC in this interaction. We show that detergent-solubilized SecYEG is capable of discriminating between the nascent chains of various lengths and engages a signal sequence in a well-defined conformation in the absence of accessory factors. Further, YidC alters the conformation of the signal peptide bound to SecYEG. The results described in this chapter show that YidC affects the SecYEG-nascent chain interaction at early stages of translocation/insertion and suggest a YidC-facilitated mechanism for lateral exit of transmembrane domains from SecYEG into the lipid bilayer.
Resumo:
Nitrogen-containing heterocycles, such as indolines and pyrroloindolines, are prevalent in a variety of diverse natural products, many of which exhibit remarkable biological activities. These frameworks have inspired innovative research aimed at discovering novel methods for their stereoselective preparation.
We have developed an enantioselective synthesis of pyrroloindolines based on a formal (3 + 2) cycloaddition of indoles and 2-amidoacrylates. This reaction is promoted by (R)-BINOL•SnCl4; this complex is a Lewis acid-assisted Brønsted acid that effects a highly face-selective catalyst-controlled protonation of an enolate. Mechanistic studies also determined that the initial product of this reaction is an indolinium ion, which upon aqueous workup undergoes cyclization to the pyrroloindoline.
Based on this result, we investigated alternative nucleophiles to trap the indolinium ion. First, addition of sodium borohydride to the optimized reaction conditions yields indoline-containing amino acid derivatives.
Next, carbon nucleophiles were explored. Indole substrates incorporating a tethered alkene were exposed to the conditions for the formal (3 + 2) cycloaddition, resulting in a conjugate addition/asymmetric protonation/Prins cyclization cascade. In this transformation, the indolinium ion is attacked by the olefin, and the resulting carbocation is quenched by a chloride ion. Zirconium tetrachloride was found to be the optimal Lewis acid. Stoichiometric proton and chloride sources were also found to be crucial for reactivity.
Resumo:
The 1-6 MeV electron flux at 1 AU has been measured for the time period October 1972 to December 1977 by the Caltech Electron/Isotope Spectrometers on the IMP-7 and IMP-8 satellites. The non-solar interplanetary electron flux reported here covered parts of five synodic periods. The 88 Jovian increases identified in these five synodic periods were classified by their time profiles. The fall time profiles were consistent with an exponential fall with τ ≈ 4-9 days. The rise time profiles displayed a systematic variation over the synodic period. Exponential rise time profiles with τ ≈ 1-3 days tended to occur in the time period before nominal connection, diffusive profiles predicted by the convection-diffusion model around nominal connection, and abrupt profiles after nominal connection.
The times of enhancements in the magnetic field, │B│, at 1 AU showed a better correlation than corotating interaction regions (CIR's) with Jovian increases and other changes in the electron flux at 1 AU, suggesting that │B│ enhancements indicate the times that barriers to electron propagation pass Earth. Time sequences of the increases and decreases in the electron flux at 1 AU were qualitatively modeled by using the times that CIR's passed Jupiter and the times that │B│ enhancements passed Earth.
The electron data observed at 1 AU were modeled by using a convection-diffusion model of Jovian electron propagation. The synodic envelope formed by the maxima of the Jovian increases was modeled by the envelope formed by the predicted intensities at a time less than that needed to reach equilibrium. Even though the envelope shape calculated in this way was similar to the observed envelope, the required diffusion coefficients were not consistent with a diffusive process.
Three Jovian electron increases at 1 AU for the 1974 synodic period were fit with rise time profiles calculated from the convection-diffusion model. For the fits without an ambient electron background flux, the values for the diffusion coefficients that were consistent with the data were kx = 1.0 - 2.5 x 1021 cm2/sec and ky = 1.6 - 2.0 x 1022 cm2/sec. For the fits that included the ambient electron background flux, the values for the diffusion coefficients that were consistent with the data were kx = 0.4 - 1.0 x 1021 cm2/sec and ky = 0.8 - 1.3 x 1022 cm2/sec.
Resumo:
Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.
To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.
The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.
Resumo:
Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.
In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.
Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.
We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.
Resumo:
Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π-stack. Electrochemical sensors based on DNA CT have previously been used for single-nucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.
First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.
Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.
For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μL per well). This multiplexed platform has enabled the simultaneous detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.
With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals via a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.
As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of DNMT1, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.
Resumo:
Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.
The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.
Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.
Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.
Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.