2 resultados para Term of protection
em CaltechTHESIS
Resumo:
In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions.
For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions.
To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building’s natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building’s capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion.
The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis.
The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records.
Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures.
We also provide a close form in term of a vector intensity measure (PGV, PGD) of the PFA collapse prediction model for practical collapse risk assessment.
Resumo:
The general theory of Whitham for slowly-varying non-linear wavetrains is extended to the case where some of the defining partial differential equations cannot be put into conservation form. Typical examples are considered in plasma dynamics and water waves in which the lack of a conservation form is due to dissipation; an additional non-conservative element, the presence of an external force, is treated for the plasma dynamics example. Certain numerical solutions of the water waves problem (the Korteweg-de Vries equation with dissipation) are considered and compared with perturbation expansions about the linearized solution; it is found that the first correction term in the perturbation expansion is an excellent qualitative indicator of the deviation of the dissipative decay rate from linearity.
A method for deriving necessary and sufficient conditions for the existence of a general uniform wavetrain solution is presented and illustrated in the plasma dynamics problem. Peaking of the plasma wave is demonstrated, and it is shown that the necessary and sufficient existence conditions are essentially equivalent to the statement that no wave may have an amplitude larger than the peaked wave.
A new type of fully non-linear stability criterion is developed for the plasma uniform wavetrain. It is shown explicitly that this wavetrain is stable in the near-linear limit. The nature of this new type of stability is discussed.
Steady shock solutions are also considered. By a quite general method, it is demonstrated that the plasma equations studied here have no steady shock solutions whatsoever. A special type of steady shock is proposed, in which a uniform wavetrain joins across a jump discontinuity to a constant state. Such shocks may indeed exist for the Korteweg-de Vries equation, but are barred from the plasma problem because entropy would decrease across the shock front.
Finally, a way of including the Landau damping mechanism in the plasma equations is given. It involves putting in a dissipation term of convolution integral form, and parallels a similar approach of Whitham in water wave theory. An important application of this would be towards resolving long-standing difficulties about the "collisionless" shock.