2 resultados para Tensions

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

<p>On October 24, 1871, a massacre of eighteen Chinese in Los Angeles brought the small southern California settlement into the national spotlight. Within a few days, news of this night of horrors was reported in newspapers across the country. This massacre has been cited in Asian American narratives as the first documented outbreak of ethnic violence against a Chinese community in the United States. This is ironic because Los Angeles small population has generally placed it on the periphery in historical studies of the California anti-Chinese movement. Because the massacre predated Los Angeles organized Chinese exclusion movements of the late 1870s, it has often been erroneously dismissed as an aberration in the history of the city.</p> <p>The violence of 1871 was an outburst highlighting existing community tensions that would become part of public debate by decades close. The purpose of this study is to insert the massacre into a broader context of anti-Chinese sentiments, legal discrimination, and dehumanization in nineteenth century Los Angeles. While a second incident of widespread anti-Chinese violence never occurred, brutal attacks directed at Chinese small businessmen and others highlighted continued community conflict. Similarly, economic rivalries and concerns over Chinese prostitution that underlay the 1871 massacre were manifest in later campaigns of economic discrimination and vice suppression that sought to minimize Chinese influence within municipal limits. An analysis of the massacre in terms of anti-Chinese legal, social and economic strategies in nineteenth-century Los Angeles will elucidate these important continuities.</p>

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<p>The ability to sense mechanical force is vital to all organisms to interact with and respond to stimuli in their environment. Mechanosensation is critical to many physiological functions such as the senses of hearing and touch in animals, gravitropism in plants and osmoregulation in bacteria. Of these processes, the best understood at the molecular level involve bacterial mechanosensitive channels. Under hypo-osmotic stress, bacteria are able to alleviate turgor pressure through mechanosensitive channels that gate directly in response to tension in the membrane lipid bilayer. A key participant in this response is the mechanosensitive channel of large conductance (MscL), a non-selective channel with a high conductance of ~3 nS that gates at tensions close to the membrane lytic tension.</p> <p>It has been appreciated since the original discovery by C. Kung that the small subunit size (~130 to 160 residues) and the high conductance necessitate that MscL forms a homo-oligomeric channel. Over the past 20 years of study, the proposed oligomeric state of MscL has ranged from monomer to hexamer. Oligomeric state has been shown to vary between MscL homologues and is influenced by lipid/detergent environment. In this thesis, we report the creation of a chimera library to systematically survey the correlation between MscL sequence and oligomeric state to identify the sequence determinants of oligomeric state. Our results demonstrate that although there is no combination of sequences uniquely associated with a given oligomeric state (or mixture of oligomeric states), there are significant correlations. In the quest to characterize the oligomeric state of MscL, an exciting discovery was made about the dynamic nature of the MscL complex. We found that in detergent solution, under mild heating conditions (37 C 60 C), subunits of MscL can exchange between complexes, and the dynamics of this process are sensitive to the protein sequence.</p> <p>Extensive efforts were made to produce high diffraction quality crystals of MscL for the determination of a high resolution X-ray crystal structure of a full length channel. The surface entropy reduction strategy was applied to the design of S. aureus MscL variants and while the strategy appears to have improved the crystallizability of S. aureus MscL, unfortunately the diffraction qualities of these crystals were not significantly improved. MscL chimeras were also screened for crystallization in various solubilization detergents, but also failed to yield high quality crystals.</p> <p>MscL is a fascinating protein and continues to serve as a model system for the study of the structural and functional properties of mechanosensitive channels. Further characterization of the MscL chimera library will offer more insight into the characteristics of the channel. Of particular interest are the functional characterization of the chimeras and the exploration of the physiological relevance of intercomplex subunit exchange.</p>