10 resultados para Tablet computers
em CaltechTHESIS
Resumo:
Hartree-Fock (HF) calculations have had remarkable success in describing large nuclei at high spin, temperature and deformation. To allow full range of possible deformations, the Skyrme HF equations can be discretized on a three-dimensional mesh. However, such calculations are currently limited by the computational resources provided by traditional supercomputers. To take advantage of recent developments in massively parallel computing technology, we have implemented the LLNL Skyrme-force static and rotational HF codes on Intel's DELTA and GAMMA systems at Caltech.
We decomposed the HF code by assigning a portion of the mesh to each node, with nearest neighbor meshes assigned to nodes connected by communication· channels. This kind of decomposition is well-suited for the DELTA and the GAMMA architecture because the only non-local operations are wave function orthogonalization and the boundary conditions of the Poisson equation for the Coulomb field.
Our first application of the HF code on parallel computers has been the study of identical superdeformed (SD) rotational bands in the Hg region. In the last ten years, many SD rotational bands have been found experimentally. One very surprising feature found in these SD rotational bands is that many pairs of bands in nuclei that differ by one or two mass units have nearly identical deexcitation gamma-ray energies. Our calculations of the five rotational bands in ^(192)Hg and ^(194)Pb show that the filling of specific orbitals can lead to bands with deexcitation gamma-ray energies differing by at most 2 keV in nuclei differing by two mass units and over a range of angular momenta comparable to that observed experimentally. Our calculations of SD rotational bands in the Dy region also show that twinning can be achieved by filling or emptying some specific orbitals.
The interpretation of future precise experiments on atomic parity nonconservation (PNC) in terms of parameters of the Standard Model could be hampered by uncertainties in the atomic and nuclear structure. As a further application of the massively parallel HF calculations, we calculated the proton and neutron densities of the Cesium isotopes from A = 125 to A = 139. Based on our good agreement with experimental charge radii, binding energies, and ground state spins, we conclude that the uncertainties in the ratios of weak charges are less than 10^(-3), comfortably smaller than the anticipated experimental error.
Resumo:
We investigate the 2d O(3) model with the standard action by Monte Carlo simulation at couplings β up to 2.05. We measure the energy density, mass gap and susceptibility of the model, and gather high statistics on lattices of size L ≤ 1024 using the Floating Point Systems T-series vector hypercube and the Thinking Machines Corp.'s Connection Machine 2. Asymptotic scaling does not appear to set in for this action, even at β = 2.10, where the correlation length is 420. We observe a 20% difference between our estimate m/Λ^─_(Ms) = 3.52(6) at this β and the recent exact analytical result . We use the overrelaxation algorithm interleaved with Metropolis updates and show that decorrelation time scales with the correlation length and the number of overrelaxation steps per sweep. We determine its effective dynamical critical exponent to be z' = 1.079(10); thus critical slowing down is reduced significantly for this local algorithm that is vectorizable and parallelizable.
We also use the cluster Monte Carlo algorithms, which are non-local Monte Carlo update schemes which can greatly increase the efficiency of computer simulations of spin models. The major computational task in these algorithms is connected component labeling, to identify clusters of connected sites on a lattice. We have devised some new SIMD component labeling algorithms, and implemented them on the Connection Machine. We investigate their performance when applied to the cluster update of the two dimensional Ising spin model.
Finally we use a Monte Carlo Renormalization Group method to directly measure the couplings of block Hamiltonians at different blocking levels. For the usual averaging block transformation we confirm the renormalized trajectory (RT) observed by Okawa. For another improved probabilistic block transformation we find the RT, showing that it is much closer to the Standard Action. We then use this block transformation to obtain the discrete β-function of the model which we compare to the perturbative result. We do not see convergence, except when using a rescaled coupling β_E to effectively resum the series. For the latter case we see agreement for m/ Λ^─_(Ms) at , β = 2.14, 2.26, 2.38 and 2.50. To three loops m/Λ^─_(Ms) = 3.047(35) at β = 2.50, which is very close to the exact value m/ Λ^─_(Ms) = 2.943. Our last point at β = 2.62 disagrees with this estimate however.
Resumo:
Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.
This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.
One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.
One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.
Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.
As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.
Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.
We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.
We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.
In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.
Resumo:
Life is the result of the execution of molecular programs: like how an embryo is fated to become a human or a whale, or how a person’s appearance is inherited from their parents, many biological phenomena are governed by genetic programs written in DNA molecules. At the core of such programs is the highly reliable base pairing interaction between nucleic acids. DNA nanotechnology exploits the programming power of DNA to build artificial nanostructures, molecular computers, and nanomachines. In particular, DNA origami—which is a simple yet versatile technique that allows one to create various nanoscale shapes and patterns—is at the heart of the technology. In this thesis, I describe the development of programmable self-assembly and reconfiguration of DNA origami nanostructures based on a unique strategy: rather than relying on Watson-Crick base pairing, we developed programmable bonds via the geometric arrangement of stacking interactions, which we termed stacking bonds. We further demonstrated that such bonds can be dynamically reconfigurable.
The first part of this thesis describes the design and implementation of stacking bonds. Our work addresses the fundamental question of whether one can create diverse bond types out of a single kind of attractive interaction—a question first posed implicitly by Francis Crick while seeking a deeper understanding of the origin of life and primitive genetic code. For the creation of multiple specific bonds, we used two different approaches: binary coding and shape coding of geometric arrangement of stacking interaction units, which are called blunt ends. To construct a bond space for each approach, we performed a systematic search using a computer algorithm. We used orthogonal bonds to experimentally implement the connection of five distinct DNA origami nanostructures. We also programmed the bonds to control cis/trans configuration between asymmetric nanostructures.
The second part of this thesis describes the large-scale self-assembly of DNA origami into two-dimensional checkerboard-pattern crystals via surface diffusion. We developed a protocol where the diffusion of DNA origami occurs on a substrate and is dynamically controlled by changing the cationic condition of the system. We used stacking interactions to mediate connections between the origami, because of their potential for reconfiguring during the assembly process. Assembling DNA nanostructures directly on substrate surfaces can benefit nano/microfabrication processes by eliminating a pattern transfer step. At the same time, the use of DNA origami allows high complexity and unique addressability with six-nanometer resolution within each structural unit.
The third part of this thesis describes the use of stacking bonds as dynamically breakable bonds. To break the bonds, we used biological machinery called the ParMRC system extracted from bacteria. The system ensures that, when a cell divides, each daughter cell gets one copy of the cell’s DNA by actively pushing each copy to the opposite poles of the cell. We demonstrate dynamically expandable nanostructures, which makes stacking bonds a promising candidate for reconfigurable connectors for nanoscale machine parts.
Resumo:
Storage systems are widely used and have played a crucial rule in both consumer and industrial products, for example, personal computers, data centers, and embedded systems. However, such system suffers from issues of cost, restricted-lifetime, and reliability with the emergence of new systems and devices, such as distributed storage and flash memory, respectively. Information theory, on the other hand, provides fundamental bounds and solutions to fully utilize resources such as data density, information I/O and network bandwidth. This thesis bridges these two topics, and proposes to solve challenges in data storage using a variety of coding techniques, so that storage becomes faster, more affordable, and more reliable.
We consider the system level and study the integration of RAID schemes and distributed storage. Erasure-correcting codes are the basis of the ubiquitous RAID schemes for storage systems, where disks correspond to symbols in the code and are located in a (distributed) network. Specifically, RAID schemes are based on MDS (maximum distance separable) array codes that enable optimal storage and efficient encoding and decoding algorithms. With r redundancy symbols an MDS code can sustain r erasures. For example, consider an MDS code that can correct two erasures. It is clear that when two symbols are erased, one needs to access and transmit all the remaining information to rebuild the erasures. However, an interesting and practical question is: What is the smallest fraction of information that one needs to access and transmit in order to correct a single erasure? In Part I we will show that the lower bound of 1/2 is achievable and that the result can be generalized to codes with arbitrary number of parities and optimal rebuilding.
We consider the device level and study coding and modulation techniques for emerging non-volatile memories such as flash memory. In particular, rank modulation is a novel data representation scheme proposed by Jiang et al. for multi-level flash memory cells, in which a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. It eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells. In order to decrease the decoding complexity, we propose two variations of this scheme in Part II: bounded rank modulation where only small sliding windows of cells are sorted to generated permutations, and partial rank modulation where only part of the n cells are used to represent data. We study limits on the capacity of bounded rank modulation and propose encoding and decoding algorithms. We show that overlaps between windows will increase capacity. We present Gray codes spanning all possible partial-rank states and using only ``push-to-the-top'' operations. These Gray codes turn out to solve an open combinatorial problem called universal cycle, which is a sequence of integers generating all possible partial permutations.
Resumo:
This thesis describes the design and implementation of a situation awareness application. The application gathers data from sensors including accelerometers for monitoring earthquakes, carbon monoxide sensors for monitoring fires, radiation detectors, and dust sensors. The application also gathers Internet data sources including data about traffic congestion on daily commute routes, information about hazards, news relevant to the user of the application, and weather. The application sends the data to a Cloud computing service which aggregates data streams from multiple sites and detects anomalies. Information from the Cloud service is then displayed by the application on a tablet, computer monitor, or television screen. The situation awareness application enables almost all members of a community to remain aware of critical changes in their environments.
Resumo:
How powerful are Quantum Computers? Despite the prevailing belief that Quantum Computers are more powerful than their classical counterparts, this remains a conjecture backed by little formal evidence. Shor's famous factoring algorithm [Shor97] gives an example of a problem that can be solved efficiently on a quantum computer with no known efficient classical algorithm. Factoring, however, is unlikely to be NP-Hard, meaning that few unexpected formal consequences would arise, should such a classical algorithm be discovered. Could it then be the case that any quantum algorithm can be simulated efficiently classically? Likewise, could it be the case that Quantum Computers can quickly solve problems much harder than factoring? If so, where does this power come from, and what classical computational resources do we need to solve the hardest problems for which there exist efficient quantum algorithms?
We make progress toward understanding these questions through studying the relationship between classical nondeterminism and quantum computing. In particular, is there a problem that can be solved efficiently on a Quantum Computer that cannot be efficiently solved using nondeterminism? In this thesis we address this problem from the perspective of sampling problems. Namely, we give evidence that approximately sampling the Quantum Fourier Transform of an efficiently computable function, while easy quantumly, is hard for any classical machine in the Polynomial Time Hierarchy. In particular, we prove the existence of a class of distributions that can be sampled efficiently by a Quantum Computer, that likely cannot be approximately sampled in randomized polynomial time with an oracle for the Polynomial Time Hierarchy.
Our work complements and generalizes the evidence given in Aaronson and Arkhipov's work [AA2013] where a different distribution with the same computational properties was given. Our result is more general than theirs, but requires a more powerful quantum sampler.
Resumo:
I. Trimesic acid (1, 3, 5-benzenetricarboxylic acid) crystallizes with a monoclinic unit cell of dimensions a = 26.52 A, b = 16.42 A, c = 26.55 A, and β = 91.53° with 48 molecules /unit cell. Extinctions indicated a space group of Cc or C2/c; a satisfactory structure was obtained in the latter with 6 molecules/asymmetric unit - C54O36H36 with a formula weight of 1261 g. Of approximately 12,000 independent reflections within the CuKα sphere, intensities of 11,563 were recorded visually from equi-inclination Weissenberg photographs.
The structure was solved by packing considerations aided by molecular transforms and two- and three-dimensional Patterson functions. Hydrogen positions were found on difference maps. A total of 978 parameters were refined by least squares; these included hydrogen parameters and anisotropic temperature factors for the C and O atoms. The final R factor was 0.0675; the final "goodness of fit" was 1.49. All calculations were carried out on the Caltech IBM 7040-7094 computer using the CRYRM Crystallographic Computing System.
The six independent molecules fall into two groups of three nearly parallel molecules. All molecules are connected by carboxylto- carboxyl hydrogen bond pairs to form a continuous array of sixmolecule rings with a chicken-wire appearance. These arrays bend to assume two orientations, forming pleated sheets. Arrays in different orientations interpenetrate - three molecules in one orientation passing through the holes of three parallel arrays in the alternate orientation - to produce a completely interlocking network. One third of the carboxyl hydrogen atoms were found to be disordered.
II. Optical transforms as related to x-ray diffraction patterns are discussed with reference to the theory of Fraunhofer diffraction.
The use of a systems approach in crystallographic computing is discussed with special emphasis on the way in which this has been done at the California Institute of Technology.
An efficient manner of calculating Fourier and Patterson maps on a digital computer is presented. Expressions for the calculation of to-scale maps for standard sections and for general-plane sections are developed; space-group-specific expressions in a form suitable for computers are given for all space groups except the hexagonal ones.
Expressions for the calculation of settings for an Eulerian-cradle diffractometer are developed for both the general triclinic case and the orthogonal case.
Photographic materials on pp. 4, 6, 10, and 20 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.
Resumo:
This thesis consists of three essays in the areas of political economy and game theory, unified by their focus on the effects of pre-play communication on equilibrium outcomes.
Communication is fundamental to elections. Chapter 2 extends canonical voter turnout models, where citizens, divided into two competing parties, choose between costly voting and abstaining, to include any form of communication, and characterizes the resulting set of Aumann's correlated equilibria. In contrast to previous research, high-turnout equilibria exist in large electorates and uncertain environments. This difference arises because communication can coordinate behavior in such a way that citizens find it incentive compatible to follow their correlated signals to vote more. The equilibria have expected turnout of at least twice the size of the minority for a wide range of positive voting costs.
In Chapter 3 I introduce a new equilibrium concept, called subcorrelated equilibrium, which fills the gap between Nash and correlated equilibrium, extending the latter to multiple mediators. Subcommunication equilibrium similarly extends communication equilibrium for incomplete information games. I explore the properties of these solutions and establish an equivalence between a subset of subcommunication equilibria and Myerson's quasi-principals' equilibria. I characterize an upper bound on expected turnout supported by subcorrelated equilibrium in the turnout game.
Chapter 4, co-authored with Thomas Palfrey, reports a new study of the effect of communication on voter turnout using a laboratory experiment. Before voting occurs, subjects may engage in various kinds of pre-play communication through computers. We study three communication treatments: No Communication, a control; Public Communication, where voters exchange public messages with all other voters, and Party Communication, where messages are exchanged only within one's own party. Our results point to a strong interaction effect between the form of communication and the voting cost. With a low voting cost, party communication increases turnout, while public communication decreases turnout. The data are consistent with correlated equilibrium play. With a high voting cost, public communication increases turnout. With communication, we find essentially no support for the standard Nash equilibrium turnout predictions.
Resumo:
Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry.
In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive.
Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved in using our general DNA-based technology for engineering dynamical behaviors in the test tube. In this process, we identify important design rules that inform our choice of molecular motifs and our algorithms for designing and verifying DNA sequences for our molecular implementation. We also develop flexible molecular strategies for "tuning" our reaction rates and stoichiometries in order to compensate for unavoidable non-idealities in the molecular implementation, such as imperfectly synthesized molecules and spurious "leak" pathways that compete with desired pathways.
We successfully implement three distinct autocatalytic reactions, which we then combine into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realization is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.