11 resultados para TECHNIQUES: HIGH ANGULAR RESOLUTION

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle- size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process.

As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar disks. Furthermore, I compared these observational constraints with simple physical models of grain evolution that include collisional coagulation, fragmentation, and the interaction of these grains with the gaseous disk (the radial drift problem). For the parameters explored, these observational constraints are in agreement with a population of grains limited in size by radial drift. Finally, I also discuss future endeavors with forthcoming ALMA observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From studies of protoplanetary disks to extrasolar planets and planetary debris, we aim to understand the full evolution of a planetary system. Observational constraints from ground- and space-based instrumentation allows us to measure the properties of objects near and far and are central to developing this understanding. We present here three observational campaigns that, when combined with theoretical models, reveal characteristics of different stages and remnants of planet formation. The Kuiper Belt provides evidence of chemical and dynamical activity that reveals clues to its primordial environment and subsequent evolution. Large samples of this population can only be assembled at optical wavelengths, with thermal measurements at infrared and sub-mm wavelengths currently available for only the largest and closest bodies. We measure the size and shape of one particular object precisely here, in hopes of better understanding its unique dynamical history and layered composition.

Molecular organic chemistry is one of the most fundamental and widespread facets of the universe, and plays a key role in planet formation. A host of carbon-containing molecules vibrationally emit in the near-infrared when excited by warm gas, T~1000 K. The NIRSPEC instrument at the W.M. Keck Observatory is uniquely configured to study large ranges of this wavelength region at high spectral resolution. Using this facility we present studies of warm CO gas in protoplanetary disks, with a new code for precise excitation modeling. A parameterized suite of models demonstrates the abilities of the code and matches observational constraints such as line strength and shape. We use the models to probe various disk parameters as well, which are easily extensible to others with known disk emission spectra such as water, carbon dioxide, acetylene, and hydrogen cyanide.

Lastly, the existence of molecules in extrasolar planets can also be studied with NIRSPEC and reveals a great deal about the evolution of the protoplanetary gas. The species we observe in protoplanetary disks are also often present in exoplanet atmospheres, and are abundant in Earth's atmosphere as well. Thus, a sophisticated telluric removal code is necessary to analyze these high dynamic range, high-resolution spectra. We present observations of a hot Jupiter, revealing water in its atmosphere and demonstrating a new technique for exoplanet mass determination and atmospheric characterization. We will also be applying this atmospheric removal code to the aforementioned disk observations, to improve our data analysis and probe less abundant species. Guiding models using observations is the only way to develop an accurate understanding of the timescales and processes involved. The futures of the modeling and of the observations are bright, and the end goal of realizing a unified model of planet formation will require both theory and data, from a diverse collection of sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphogenesis is a phenomenon of intricate balance and dynamic interplay between processes occurring at a wide range of scales (spatial, temporal and energetic). During development, a variety of physical mechanisms are employed by tissues to simultaneously pattern, move, and differentiate based on information exchange between constituent cells, perhaps more than at any other time during an organism's life. To fully understand such events, a combined theoretical and experimental framework is required to assist in deciphering the correlations at both structural and functional levels at scales that include the intracellular and tissue levels as well as organs and organ systems. Microscopy, especially diffraction-limited light microscopy, has emerged as a central tool to capture the spatio-temporal context of life processes. Imaging has the unique advantage of watching biological events as they unfold over time at single-cell resolution in the intact animal. In this work I present a range of problems in morphogenesis, each unique in its requirements for novel quantitative imaging both in terms of the technique and analysis. Understanding the molecular basis for a developmental process involves investigating how genes and their products- mRNA and proteins-function in the context of a cell. Structural information holds the key to insights into mechanisms and imaging fixed specimens paves the first step towards deciphering gene function. The work presented in this thesis starts with the demonstration that the fluorescent signal from the challenging environment of whole-mount imaging, obtained by in situ hybridization chain reaction (HCR), scales linearly with the number of copies of target mRNA to provide quantitative sub-cellular mapping of mRNA expression within intact vertebrate embryos. The work then progresses to address aspects of imaging live embryonic development in a number of species. While processes such as avian cartilage growth require high spatial resolution and lower time resolution, dynamic events during zebrafish somitogenesis require higher time resolution to capture the protein localization as the somites mature. The requirements on imaging are even more stringent in case of the embryonic zebrafish heart that beats with a frequency of ~ 2-2.5 Hz, thereby requiring very fast imaging techniques based on two-photon light sheet microscope to capture its dynamics. In each of the hitherto-mentioned cases, ranging from the level of molecules to organs, an imaging framework is developed, both in terms of technique and analysis to allow quantitative assessment of the process in vivo. Overall the work presented in this thesis combines new quantitative tools with novel microscopy for the precise understanding of processes in embryonic development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of low-noise heterodyne receivers at THz frequencies for submillimeter astronomy using Nb-based superconductor-insulator-superconductor (SIS) tunneling junctions. The mixers utilize a quasi-optical configuration which consists of a planar twin-slot antenna and antisymmetrically-fed two-junctions on an antireflection-coated silicon hyperhemispherical lens. On-chip integrated tuning circuits, in the form of microstrip lines, are used to obtain maximum coupling efficiency in the designed frequency band. To reduce the rf losses in the integrated tuning circuits above the superconducting Nb gap frequency (~ 700 GHz), normal-metal Al is used to replace Nb as the tuning circuits.

To account the rf losses in the micros trip lines, we calculated the surface impedance of the AI films using the nonlocal anomalous skin effect for finite thickness films. Nb films were calculated using the Mattis-Bardeen theory in the extreme anomalous limit. Our calculations show that the losses of the Al and Nb microstrip lines are about equal at 830 GHz. For Al-wiring and Nb-wiring mixers both optimized at 1050 GHz, the RF coupling efficiency of Al-wiring mixer is higher than that of Nb-wiring one by almost 50%. We have designed both Nb-wiring and Al-wiring mixers below and above the gap frequency.

A Fourier transform spectrometer (FTS) has been constructed especially for the study of the frequency response of SIS receivers. This FTS features large aperture size (10 inch) and high frequency resolution (114 MHz). The FTS spectra, obtained using the SIS receivers as direct detectors on the FTS, agree quite well with our theoretical simulations. We have also, for the first time, measured the FTS heterodyne response of an SIS mixer at sufficiently high resolution to resolve the LO and the sidebands. Heterodyne measurements of our SIS receivers with Nb-wiring or Al-wiring have yielded results which arc among the best reported to date for broadband heterodyne receivers. The Nb-wiring mixers, covering 400 - 850 GHz band with four separate fixed-tuned mixers, have uncorrected DSB receiver noise temperature around 5hv/kb to 700 GHz, and better than 540 K at 808 GHz. An Al-wiring mixer designed for 1050 GHz band has an uncorrected DSB receiver noise temperature 840 K at 1042 GHz and 2.5 K bath temperature. Mixer performance analysis shows that Nb junctions can work well up to twice the gap frequency and the major cause of loss above the gap frequency is the rf losses in the microstrip tuning structures. Further advances in THz SIS mixers may be possible using circuits fabricated with higher-gap superconductors such as NbN. However, this will require high-quality films with low RF surface resistance at THz frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planets are assembled from the gas, dust, and ice in the accretion disks that encircle young stars. Ices of chemical compounds with low condensation temperatures (<200 K), the so-called volatiles, dominate the solid mass reservoir from which planetesimals are formed and are thus available to build the protoplanetary cores of gas/ice giant planets. It has long been thought that the regions near the condensation fronts of volatiles are preferential birth sites of planets. Moreover, the main volatiles in disks are also the main C-and O-containing species in (exo)planetary atmospheres. Understanding the distribution of volatiles in disks and their role in planet-formation processes is therefore of great interest.

This thesis addresses two fundamental questions concerning the nature of volatiles in planet-forming disks: (1) how are volatiles distributed throughout a disk, and (2) how can we use volatiles to probe planet-forming processes in disks? We tackle the first question in two complementary ways. We have developed a novel super-resolution method to constrain the radial distribution of volatiles throughout a disk by combining multi-wavelength spectra. Thanks to the ordered velocity and temperature profiles in disks, we find that detailed constraints can be derived even with spatially and spectrally unresolved data -- provided a wide range of energy levels are sampled. We also employ high-spatial resolution interferometric images at (sub)mm frequencies using the Atacama Large Millimeter Array (ALMA) to directly measure the radial distribution of volatiles.

For the second question, we combine volatile gas emission measurements with those of the dust continuum emission or extinction to understand dust growth mechanisms in disks and disk instabilities at planet-forming distances from the central star. Our observations and models support the idea that the water vapor can be concentrated in regions near its condensation front at certain evolutionary stages in the lifetime of protoplanetary disks, and that fast pebble growth is likely to occur near the condensation fronts of various volatile species.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Techniques are described for mounting and visualizing biological macromolecules for high resolution electron microscopy. Standard techniques are included in a discussion of new methods designed to provide the highest structural resolution. Methods are also discussed for handling samples on the grid, for making accurate size measurements at the 20 Å level, and for photographically enhancing image contrast.

The application of these techniques to the study of the binding of DNA polymerase to DNA is described. It is shown that the electron micrographs of this material are in agreement with the model proposed by Dr. Arthur Kornberg. A model is described which locates several active sites on the enzyme.

The chromosomal material of the protozoan tetrahymena has been isolated and characterized by biochemical techniques and by electron microscopy. This material is shown to be typical of chromatin of higher creatures.

Comparison with other chromatins discloses that the genome of tetrahymena is highly template active and has a relatively simple genetic construction.

High resolution electron microscope procedures developed in this work have been combined with standard biochemical techniques to give a comprehensive picture of the structure of interphase chromosome fibers. The distribution of the chromosomal proteins along its DNA is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The determination of the energy levels and the probabilities of transition between them, by the formal analysis of observed electronic, vibrational, and rotational band structures, forms the direct goal of all investigations of molecular spectra, but the significance of such data lies in the possibility of relating them theoretically to more concrete properties of molecules and the radiation field. From the well developed electronic spectra of diatomic molecules, it has been possible, with the aid of the non-relativistic quantum mechanics, to obtain accurate moments of inertia, molecular potential functions, electronic structures, and detailed information concerning the coupling of spin and orbital angular monenta with the angular momentum of nuclear rotation. The silicon fluori1e molecule has been investigated in this laboratory, and is found to emit bands whose vibrational and rotational structures can be analyzed in this detailed fashion.

Like silicon fluoride, however, the great majority of diatomic molecules are formed only under the unusual conditions of electrical discharge, or in high temperature furnaces, so that although their spectra are of great theoretical interest, the chemist is eager to proceed to a study of polyatomic molecules, in the hope that their more practically interesting structures might also be determined with the accuracy and assurance which characterize the spectroscopic determinations of the constants of diatomic molecules. Some progress has been made in the determination of molecule potential functions from the vibrational term values deduced from Raman and infrared spectra, but in no case can the calculations be carried out with great generality, since the number of known term values is always small compared with the total number of potential constants in even so restricted a potential function as the simple quadratic type. For the determination of nuclear configurations and bond distances, however, a knowledge of the rotational terms is required. The spectra of about twelve of the simpler polyatomic molecules have been subjected to rotational analyses, and a number of bond distances are known with considerable accuracy, yet the number of molecules whose rotational fine structure has been resolved even with the most powerful instruments is small. Consequently, it was felt desirable to investigate the spectra of a number of other promising polyatomic molecules, with the purpose of carrying out complete rotational analyses of all resolvable bands, and ascertaining the value of the unresolved band envelopes in determining the structures of such molecules, in the cases in which resolution is no longer possible. Although many of the compounds investigated absorbed too feebly to be photographed under high dispersion with the present infrared sensitizations, the location and relative intensities of their bands, determined by low dispersion measurements, will be reported in the hope that these compounds may be reinvestigated in the future with improved techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of the strength of a material is relevant to a variety of applications including automobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of materials at high pressures and strain-rates has been studied extensively using plate impact experiments, the results provide measurements in one direction only. Material behavior that is dependent on strength is unaccounted for. The research in this study proposes two novel configurations to mitigate this problem.

The first configuration introduced is the oblique wedge experiment, which is comprised of a driver material, an angled target of interest and a backing material used to measure in-situ velocities. Upon impact, a shock wave is generated in the driver material. As the shock encounters the angled target, it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity of the incident wave, a transverse wave is generated that allows the target to be subjected to shear while being compressed by the initial longitudinal shock such that the material does not slip. Using numerical simulations, this study shows that a variety of oblique wedge configurations can be used to study the shear response of materials and this can be extended to strength measurement as well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities were measured using laser interferometry and results agree well with the simulations.

The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using an anvil material to back the thin sample, particle velocities measured at the rear surface of the backing plate can be implemented to calculate the shear stress in the material and subsequently the strength. Numerical simulations were conducted to show that this configuration has the ability to measure the strength for a variety of materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An instrument, the Caltech High Energy Isotope Spectrometer Telescope (HEIST), has been developed to measure isotopic abundances of cosmic ray nuclei in the charge range 3 ≤ Z ≤ 28 and the energy range between 30 and 800 MeV/nuc by employing an energy loss -- residual energy technique. Measurements of particle trajectories and energy losses are made using a multiwire proportional counter hodoscope and a stack of CsI(TI) crystal scintillators, respectively. A detailed analysis has been made of the mass resolution capabilities of this instrument.

Landau fluctuations set a fundamental limit on the attainable mass resolution, which for this instrument ranges between ~.07 AMU for z~3 and ~.2 AMU for z~2b. Contributions to the mass resolution due to uncertainties in measuring the path-length and energy losses of the detected particles are shown to degrade the overall mass resolution to between ~.1 AMU (z~3) and ~.3 AMU (z~2b).

A formalism, based on the leaky box model of cosmic ray propagation, is developed for obtaining isotopic abundance ratios at the cosmic ray sources from abundances measured in local interstellar space for elements having three or more stable isotopes, one of which is believed to be absent at the cosmic ray sources. This purely secondary isotope is used as a tracer of secondary production during propagation. This technique is illustrated for the isotopes of the elements O, Ne, S, Ar and Ca.

The uncertainties in the derived source ratios due to errors in fragmentation and total inelastic cross sections, in observed spectral shapes, and in measured abundances are evaluated. It is shown that the dominant sources of uncertainty are uncorrelated errors in the fragmentation cross sections and statistical uncertainties in measuring local interstellar abundances.

These results are applied to estimate the extent to which uncertainties must be reduced in order to distinguish between cosmic ray production in a solar-like environment and in various environments with greater neutron enrichments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of the continuation to complex values of the angular momentum of the partial wave amplitude is examined for the simplest production process, that of two particles → three particles. The presence of so-called "anomalous singularities" complicates the procedure followed relative to that used for quasi two-body scattering amplitudes. The anomalous singularities are shown to lead to exchange degenerate amplitudes with possible poles in much the same way as "normal" singularities lead to the usual signatured amplitudes. The resulting exchange-degenerate trajectories would also be expected to occur in two-body amplitudes.

The representation of the production amplitude in terms of the singularities of the partial wave amplitude is then developed and applied to the high energy region, with attention being paid to the emergence of "double Regge" terms. Certain new results are obtained for the behavior of the amplitude at zero momentum transfer, and some predictions of polarization and minima in momentum transfer distributions are made. A calculation of the polarization of the ρo meson in the reaction π - p → π - ρop at high energy with small momentum transfer to the proton is compared with data taken at 25 Gev by W. D. Walker and collaborators. The result is favorable, although limited by the statistics of the available data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The experimental consequence of Regge cuts in the angular momentum plane are investigated. The principle tool in the study is the set of diagrams originally proposed by Amati, Fubini, and Stanghellini. Mandelstam has shown that the AFS cuts are actually cancelled on the physical sheet, but they may provide a useful guide to the properties of the real cuts. Inclusion of cuts modifies the simple Regge pole predictions for high-energy scattering data. As an example, an attempt is made to fit high energy elastic scattering data for pp, ṗp, π±p, and K±p, by replacing the Igi pole by terms representing the effect of a Regge cut. The data seem to be compatible with either a cut or the Igi pole.