6 resultados para System Performance Measures.
em CaltechTHESIS
Resumo:
Structural design is a decision-making process in which a wide spectrum of requirements, expectations, and concerns needs to be properly addressed. Engineering design criteria are considered together with societal and client preferences, and most of these design objectives are affected by the uncertainties surrounding a design. Therefore, realistic design frameworks must be able to handle multiple performance objectives and incorporate uncertainties from numerous sources into the process.
In this study, a multi-criteria based design framework for structural design under seismic risk is explored. The emphasis is on reliability-based performance objectives and their interaction with economic objectives. The framework has analysis, evaluation, and revision stages. In the probabilistic response analysis, seismic loading uncertainties as well as modeling uncertainties are incorporated. For evaluation, two approaches are suggested: one based on preference aggregation and the other based on socio-economics. Both implementations of the general framework are illustrated with simple but informative design examples to explore the basic features of the framework.
The first approach uses concepts similar to those found in multi-criteria decision theory, and directly combines reliability-based objectives with others. This approach is implemented in a single-stage design procedure. In the socio-economics based approach, a two-stage design procedure is recommended in which societal preferences are treated through reliability-based engineering performance measures, but emphasis is also given to economic objectives because these are especially important to the structural designer's client. A rational net asset value formulation including losses from uncertain future earthquakes is used to assess the economic performance of a design. A recently developed assembly-based vulnerability analysis is incorporated into the loss estimation.
The presented performance-based design framework allows investigation of various design issues and their impact on a structural design. It is a flexible one that readily allows incorporation of new methods and concepts in seismic hazard specification, structural analysis, and loss estimation.
Resumo:
This thesis investigates the design and implementation of a label-free optical biosensing system utilizing a robust on-chip integrated platform. The goal has been to transition optical micro-resonator based label-free biosensing from a laborious and delicate laboratory demonstration to a tool for the analytical life scientist. This has been pursued along four avenues: (1) the design and fabrication of high-$Q$ integrated planar microdisk optical resonators in silicon nitride on silica, (2) the demonstration of a high speed optoelectronic swept frequency laser source, (3) the development and integration of a microfluidic analyte delivery system, and (4) the introduction of a novel differential measurement technique for the reduction of environmental noise.
The optical part of this system combines the results of two major recent developments in the field of optical and laser physics: the high-$Q$ optical resonator and the phase-locked electronically controlled swept-frequency semiconductor laser. The laser operates at a wavelength relevant for aqueous sensing, and replaces expensive and fragile mechanically-tuned laser sources whose frequency sweeps have limited speed, accuracy and reliability. The high-$Q$ optical resonator is part of a monolithic unit with an integrated optical waveguide, and is fabricated using standard semiconductor lithography methods. Monolithic integration makes the system significantly more robust and flexible compared to current, fragile embodiments that rely on the precarious coupling of fragile optical fibers to resonators. The silicon nitride on silica material system allows for future manifestations at shorter wavelengths. The sensor also includes an integrated microfluidic flow cell for precise and low volume delivery of analytes to the resonator surface. We demonstrate the refractive index sensing action of the system as well as the specific and nonspecific adsorption of proteins onto the resonator surface with high sensitivity. Measurement challenges due to environmental noise that hamper system performance are discussed and a differential sensing measurement is proposed, implemented, and demonstrated resulting in the restoration of a high performance sensing measurement.
The instrument developed in this work represents an adaptable and cost-effective platform capable of various sensitive, label-free measurements relevant to the study of biophysics, biomolecular interactions, cell signaling, and a wide range of other life science fields. Further development is necessary for it to be capable of binding assays, or thermodynamic and kinetics measurements; however, this work has laid the foundation for the demonstration of these applications.
Resumo:
Despite the complexity of biological networks, we find that certain common architectures govern network structures. These architectures impose fundamental constraints on system performance and create tradeoffs that the system must balance in the face of uncertainty in the environment. This means that while a system may be optimized for a specific function through evolution, the optimal achievable state must follow these constraints. One such constraining architecture is autocatalysis, as seen in many biological networks including glycolysis and ribosomal protein synthesis. Using a minimal model, we show that ATP autocatalysis in glycolysis imposes stability and performance constraints and that the experimentally well-studied glycolytic oscillations are in fact a consequence of a tradeoff between error minimization and stability. We also show that additional complexity in the network results in increased robustness. Ribosome synthesis is also autocatalytic where ribosomes must be used to make more ribosomal proteins. When ribosomes have higher protein content, the autocatalysis is increased. We show that this autocatalysis destabilizes the system, slows down response, and also constrains the system’s performance. On a larger scale, transcriptional regulation of whole organisms also follows architectural constraints and this can be seen in the differences between bacterial and yeast transcription networks. We show that the degree distributions of bacterial transcription network follow a power law distribution while the yeast network follows an exponential distribution. We then explored the evolutionary models that have previously been proposed and show that neither the preferential linking model nor the duplication-divergence model of network evolution generates the power-law, hierarchical structure found in bacteria. However, in real biological systems, the generation of new nodes occurs through both duplication and horizontal gene transfers, and we show that a biologically reasonable combination of the two mechanisms generates the desired network.
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.
Resumo:
In this work, the development of a probabilistic approach to robust control is motivated by structural control applications in civil engineering. Often in civil structural applications, a system's performance is specified in terms of its reliability. In addition, the model and input uncertainty for the system may be described most appropriately using probabilistic or "soft" bounds on the model and input sets. The probabilistic robust control methodology contrasts with existing H∞/μ robust control methodologies that do not use probability information for the model and input uncertainty sets, yielding only the guaranteed (i.e., "worst-case") system performance, and no information about the system's probable performance which would be of interest to civil engineers.
The design objective for the probabilistic robust controller is to maximize the reliability of the uncertain structure/controller system for a probabilistically-described uncertain excitation. The robust performance is computed for a set of possible models by weighting the conditional performance probability for a particular model by the probability of that model, then integrating over the set of possible models. This integration is accomplished efficiently using an asymptotic approximation. The probable performance can be optimized numerically over the class of allowable controllers to find the optimal controller. Also, if structural response data becomes available from a controlled structure, its probable performance can easily be updated using Bayes's Theorem to update the probability distribution over the set of possible models. An updated optimal controller can then be produced, if desired, by following the original procedure. Thus, the probabilistic framework integrates system identification and robust control in a natural manner.
The probabilistic robust control methodology is applied to two systems in this thesis. The first is a high-fidelity computer model of a benchmark structural control laboratory experiment. For this application, uncertainty in the input model only is considered. The probabilistic control design minimizes the failure probability of the benchmark system while remaining robust with respect to the input model uncertainty. The performance of an optimal low-order controller compares favorably with higher-order controllers for the same benchmark system which are based on other approaches. The second application is to the Caltech Flexible Structure, which is a light-weight aluminum truss structure actuated by three voice coil actuators. A controller is designed to minimize the failure probability for a nominal model of this system. Furthermore, the method for updating the model-based performance calculation given new response data from the system is illustrated.
Resumo:
This thesis presents a civil engineering approach to active control for civil structures. The proposed control technique, termed Active Interaction Control (AIC), utilizes dynamic interactions between different structures, or components of the same structure, to reduce the resonance response of the controlled or primary structure under earthquake excitations. The primary control objective of AIC is to minimize the maximum story drift of the primary structure. This is accomplished by timing the controlled interactions so as to withdraw the maximum possible vibrational energy from the primary structure to an auxiliary structure, where the energy is stored and eventually dissipated as the external excitation decreases. One of the important advantages of AIC over most conventional active control approaches is the very low external power required.
In this thesis, the AIC concept is introduced and a new AIC algorithm, termed Optimal Connection Strategy (OCS) algorithm, is proposed. The efficiency of the OCS algorithm is demonstrated and compared with two previously existing AIC algorithms, the Active Interface Damping (AID) and Active Variable Stiffness (AVS) algorithms, through idealized examples and numerical simulations of Single- and Multi-Degree-of Freedom systems under earthquake excitations. It is found that the OCS algorithm is capable of significantly reducing the story drift response of the primary structure. The effects of the mass, damping, and stiffness of the auxiliary structure on the system performance are investigated in parametric studies. Practical issues such as the sampling interval and time delay are also examined. A simple but effective predictive time delay compensation scheme is developed.