8 resultados para Successive Overrelaxation method with 1 parameter
em CaltechTHESIS
Resumo:
The quasicontinuum (QC) method was introduced to coarse-grain crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. Though many QC formulations have been proposed with varying characteristics and capabilities, a crucial cornerstone of all QC techniques is the concept of summation rules, which attempt to efficiently approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of atoms. In this work we propose a novel, fully-nonlocal, energy-based formulation of the QC method with support for legacy and new summation rules through a general energy-sampling scheme. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. Within this structure, we introduce a new class of summation rules which leverage the affine kinematics of this QC formulation to most accurately integrate thermodynamic quantities of interest. By comparing this new class of summation rules to commonly-employed rules through analysis of energy and spurious force errors, we find that the new rules produce no residual or spurious force artifacts in the large-element limit under arbitrary affine deformation, while allowing us to seamlessly bridge to full atomistics. We verify that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors than all comparable previous summation rules through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions. Due to the unique structure of these summation rules, we also use the new formulation to study scenarios with large regions of free surface, a class of problems previously out of reach of the QC method. Lastly, we present the key components of a high-performance, distributed-memory realization of the new method, including a novel algorithm for supporting unparalleled levels of deformation. Overall, this new formulation and implementation allows us to efficiently perform simulations containing an unprecedented number of degrees of freedom with low approximation error.
Resumo:
In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.
We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.
We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.
Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.
Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.
In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.
Resumo:
Two of the most important questions in mantle dynamics are investigated in three separate studies: the influence of phase transitions (studies 1 and 2), and the influence of temperature-dependent viscosity (study 3).
(1) Numerical modeling of mantle convection in a three-dimensional spherical shell incorporating the two major mantle phase transitions reveals an inherently three-dimensional flow pattern characterized by accumulation of cold downwellings above the 670 km discontinuity, and cylindrical 'avalanches' of upper mantle material into the lower mantle. The exothermic phase transition at 400 km depth reduces the degree of layering. A region of strongly-depressed temperature occurs at the base of the mantle. The temperature field is strongly modulated by this partial layering, both locally and in globally-averaged diagnostics. Flow penetration is strongly wavelength-dependent, with easy penetration at long wavelengths but strong inhibition at short wavelengths. The amplitude of the geoid is not significantly affected.
(2) Using a simple criterion for the deflection of an upwelling or downwelling by an endothermic phase transition, the scaling of the critical phase buoyancy parameter with the important lengthscales is obtained. The derived trends match those observed in numerical simulations, i.e., deflection is enhanced by (a) shorter wavelengths, (b) narrower up/downwellings (c) internal heating and (d) narrower phase loops.
(3) A systematic investigation into the effects of temperature-dependent viscosity on mantle convection has been performed in three-dimensional Cartesian geometry, with a factor of 1000-2500 viscosity variation, and Rayleigh numbers of 10^5-10^7. Enormous differences in model behavior are found, depending on the details of rheology, heating mode, compressibility and boundary conditions. Stress-free boundaries, compressibility, and temperature-dependent viscosity all favor long-wavelength flows, even in internally heated cases. However, small cells are obtained with some parameter combinations. Downwelling plumes and upwelling sheets are possible when viscosity is dependent solely on temperature. Viscous dissipation becomes important with temperature-dependent viscosity.
The sensitivity of mantle flow and structure to these various complexities illustrates the importance of performing mantle convection calculations with rheological and thermodynamic properties matching as closely as possible those of the Earth.
Resumo:
Titanocene metallacyclobutanes show a wide variety of reactivites with organic and inorganic reagents. Their reactions include methylene transfer to organic carbonyls, formation of enolates, electron transfer from activated alkyl chlorides, olefin metathesis, ring opening polymerization. Recently, preparations of heterobinuclear µ-methylene complexes were reported. In this thesis, mechanistic, synthetic, and structural studies of the heterobinuclear µ-methylene complexes will be described. Also, the reaction of titanocene methylidene trimethylphosphine complex with alkene sulfide and styrene sulfide will be presented.
Heterobinuclear µ-methylene-µ-methyl complexes C_(p2)Ti(µ-CH_2)( µ-CH_3)M(1,5-COD) have been prepared (M = Rh, Ir). X-ray crystallography showed that the methyl group of the complex was bonded to the rhodium and bridges to the titanium through an agostic bond. The ^(1)H,^(13)CNMR, IR spectra along with partial deuteration studies supported the structure in both solution and solid state. Activation of the agostic bond is demonstrated by the equilibration of the µ-CH_3 and µ-CH_2 groups. A nonlinear Arrhenius plot, an unusually large kinetic isotope effect (24(5)), and a large negative activation entropy (-64(3)eu) can be explained by the quantum-mechanical tunneling. Calculated rate constants with Bell-type barrier fitted well with the observed one. This equilibration was best explained by a 4e-4c mechanism (or σ bond metathesis) with the character of quantum-mechanical tunneling.
Heterobinuclear µ-methylene-µ-phenyl complexes were synthesized. Structural study of C_(p2)Ti(µ-CH_(2))(µ-p-Me_(2)NC_(6)H_(4))Rh(l,5-COD) showed that the two metal atoms are bridged by the methylene carbon and the ipso carbon of the p-N,N-dimethylarninophenyl group. The analogous structure of C_(p2))Ti(µ-CH_(2))(µ-o-MeOC_(6)H_(4))Rh(1,5-COD) has been verified by the differential NOE. The aromaticity of the phenyl group observed by ^(1)H NMR, was confirmed by the comparison of the C-C bond lengths in the crystallographic structure. The unusual downfield shifts of the ipso carbon in the ^(13)C NMR are assumed to be an indication of the interaction between the ipso carbon and electron-deficient titanium.
Titanium-platinum heterobinuclear µ-methylene complexes C_(p2)Ti(µ-CH_(2))(µ -X)Pt(Me)(PM_(2)Ph) have been prepared (X= Cl, Me). Structural studies indicate the following:(1) the Ti-CH2 bond possesses residual double bond character, (2) there is a dative Pt→Ti interaction which may be regarded as a π back donation from the platinum atom to the 'Ti=CH_(2)'' group, and (3) the µ-CH_3 group is bound to the titanium atom through a three-center, two-electron agostic bond.
Titanocene (η^(2)-thioformaldehyde)•PMe_3 was prepared from C_(p2)Ti=CH_(2)•PMe_3 and sulfur-containing organic compounds (e.g. alkene sulfide, triphenylphosphine sulfide) including elemental sulfur. Mechanistic studies utilizing trans-styrene sulfide-d_1 suggested the stepwise reaction to explain equimolar mixture of trans- and cis-styrene-d_1 as by-products. The product reacted with methyl iodide to produce cationic titanocene (η_(2)-thiomethoxymethyl) complex. Complexes having less coordinating anion like BF_4 or BPh_4 could be obtained through metathesis. Together with structural analyses, the further reactivities of the complexes have been explored.
The complex C_(p2)TiOCH_(2)CH(Ph)CH_2 was prepared from the compound C_(p2)Ti=CH_(2)-PMe_3 and styrene oxide. The product was characterized with ^(1)H-^(1)H correlated 2-dimensional NMR, selective decoupling of ^(1)H NMR, and differential NOE. Stereospecificity of deuterium in the product was lost when trans-styrene oxide-d_1 was allowed to react. Relative rates of the reaction were measured with varying substituents on the phenyl ring. Better linearity (r = -0.98, p^(+) = -0.79) was observed with σ_(p)^(+)than σ(r = -0.87, p = -1.26). The small magnitude of p^+ value and stereospecificity loss during the formation of product were best explained by the generation of biradicals, but partial generation of charge cannot be excluded. Carbonylation of the product followed by exposure to iodine yields the corresponding β-phenyl γ-lactone.
Resumo:
Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject.
Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods.
We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts the Fourier transformed velocity autocorrelation method to handle the big data of time-dependent atomic velocities from MD calculations, and efficiently reconstructs the phonon DOS and phonon dispersion relations. Our calculations can reproduce the phonon frequency shifts and lifetime broadenings very well at various temperatures.
To understand non-harmonic interactions in a microscopic way, we have developed a numerical fitting method to analyze the decay channels of phonon-phonon interactions. Based on the quantum perturbation theory of many-body interactions, this method is used to calculate the three-phonon and four-phonon kinematics subject to the conservation of energy and momentum, taking into account the weight of phonon couplings. We can assess the strengths of phonon-phonon interactions of different channels and anharmonic orders with the calculated two-phonon DOS. This method, with high computational efficiency, is a promising direction to advance our understandings of non-harmonic lattice dynamics and thermal transport properties.
These experimental techniques and theoretical methods have been successfully performed in the study of anharmonic behaviors of metal oxides, including rutile and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For example, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic behavior of the B1g mode can be explained by the volume effects on quasiharmonic force constants, and by the explicit cubic and quartic anharmonicity. For rutile tin dioxide (SnO2), the broadening of the B2g mode with temperature showed an unusual concave downwards curvature. This curvature was caused by a change with temperature in the number of down-conversion decay channels, originating with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong anharmonic effects were found for both phonons and for the negative thermal expansion.
Resumo:
The 1-6 MeV electron flux at 1 AU has been measured for the time period October 1972 to December 1977 by the Caltech Electron/Isotope Spectrometers on the IMP-7 and IMP-8 satellites. The non-solar interplanetary electron flux reported here covered parts of five synodic periods. The 88 Jovian increases identified in these five synodic periods were classified by their time profiles. The fall time profiles were consistent with an exponential fall with τ ≈ 4-9 days. The rise time profiles displayed a systematic variation over the synodic period. Exponential rise time profiles with τ ≈ 1-3 days tended to occur in the time period before nominal connection, diffusive profiles predicted by the convection-diffusion model around nominal connection, and abrupt profiles after nominal connection.
The times of enhancements in the magnetic field, │B│, at 1 AU showed a better correlation than corotating interaction regions (CIR's) with Jovian increases and other changes in the electron flux at 1 AU, suggesting that │B│ enhancements indicate the times that barriers to electron propagation pass Earth. Time sequences of the increases and decreases in the electron flux at 1 AU were qualitatively modeled by using the times that CIR's passed Jupiter and the times that │B│ enhancements passed Earth.
The electron data observed at 1 AU were modeled by using a convection-diffusion model of Jovian electron propagation. The synodic envelope formed by the maxima of the Jovian increases was modeled by the envelope formed by the predicted intensities at a time less than that needed to reach equilibrium. Even though the envelope shape calculated in this way was similar to the observed envelope, the required diffusion coefficients were not consistent with a diffusive process.
Three Jovian electron increases at 1 AU for the 1974 synodic period were fit with rise time profiles calculated from the convection-diffusion model. For the fits without an ambient electron background flux, the values for the diffusion coefficients that were consistent with the data were kx = 1.0 - 2.5 x 1021 cm2/sec and ky = 1.6 - 2.0 x 1022 cm2/sec. For the fits that included the ambient electron background flux, the values for the diffusion coefficients that were consistent with the data were kx = 0.4 - 1.0 x 1021 cm2/sec and ky = 0.8 - 1.3 x 1022 cm2/sec.
Resumo:
The 1.7- and 2.43-MeV levels in 9Be were populated with the reaction 11B(d, α)9Be* by bombarding thin boron on carbon foils with 1.7-MeV deuterons. The alpha particles were analyzed in energy with a surface-barrier counter set at the unique kinematically determined angle and the recoiling 9Be nuclei at 90o were analyzed in rigidity with a magnetic spectrometer, in energy by a surface-barrier counter at the spectrometer focus, and in velocity by the time delay between an alpha and a 9Be count. When a pulse from the spectrometer counter was in the appropriate delayed coincidence with a pulse from the alpha counter, the two pulses were recorded in a two-dimensional pulse height analyzer. Most of the 9Be* decay by particle breakup. Only those that gamma decay are detected by the spectrometer counter. Thus the experiment provides a direct measurement of Γrad/Γ. Analysis of 384 observed events gives Γrad/Γ = (1.16 ± 0.14) X 10-4 for the 2.43-MeV level. Combining this ratio with the value of Γrad = 0.122 ± 0.015 eV found from inelastic electron scattering gives Γ = (1.05 ± 0.18) keV. For the 1.7-MeV level, an upper limit, Γrad/Γ ≤ 2.4 = 10-5, was determined.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.