26 resultados para Substitution reactions
em CaltechTHESIS
Resumo:
Whereas stoichiometric activation of C-H bonds by complexes of transition metals is becoming increasingly common, selective functionalization of alkanes remains a formidable challenge in organometallic chemistry. The recent advances in catalytic alkane functionalization by transition-metal complexes are summarized in Chapter I.
The studies of the displacement of pentafluoropyridine in [(tmeda)Pt(CH_3)(NC_5F_5)][BAr^f_4] (1) with γ- tetrafluoropicoline, a very poor nucleophile, are reported in Chapter II. The ligand substitution occurs by a dissociative interchange mechanism. This result implies that dissociative loss of pentafluoropyridine is the rate-limiting step in the C-H activation reactions of 1.
Oxidation of dimethylplatinum(II) complexes (N-N)Pt(CH_3)_2 (N-N = tmeda(1), α-diimines) by dioxygen is described in Chapter III. Mechanistic studies suggest a two-step mechanism. First, a hydroperoxoplatinum(IV) complex is formed in a reaction between (N-N)Pt(CH_3)_2 and dioxygen. Next, the hydroperoxy complex reacts with a second equivalent of (N-N)Pt(CH_3)_2 to afford the final product, (N-N)Pt(OH)(OCH_3)(CH_3)_2. The hydroperoxy intermediate, (tmeda)Pt(OOH)(OCH_3)(CH_3)_2 (2), was isolated and characterized. The reactivity of 2 with several dime thylplatinum(II) complexes is reported.
The studies described in Chapter IV are directed toward the development of a platinum(II)-catalyzed oxidative alkane dehydrogenation. Stoichiometric conversion of alkanes (cyclohexane, ethane) to olefins (cyclohexene, ethylene) is achieved by C-H activation with [(N-N)Pt(CH_3)(CF_3CH_2OH)]BF_4 (1, N-N is N,N'-bis(3,5-di-t- butylphenyl)-1,4-diazabutadiene) which results in the formation of olefin hydride complexes. The first step in the C-H activation reaction is formation of a platinum(II) alkyl which undergoes β-hydrogen elimination to afford the olefin hydride complex. The cationic ethylplatinum(II) intermediate can be generated in situ by treating diethylplatinum(II) compounds with acids. Treatment of (phen)PtEt_2 with [H(OEt_2)_2]Bar^f_4 at low temperatures resulted in the formation of a mixture of [(phen)PtEt(OEt_2)]Bar^f_4 (8) and [(phen)Pt(C_2H_4)H] Bar^f_4 (7). The cationic olefin complexes are unreactive toward dioxygen or hydrogen peroxide. Since the success of the overall catalytic cycle depends on our ability to oxidize the olefin hydride complexes, a series of neutral olefin complexes of platinum(II) with monoanionic ligands (derivatives of pyrrole-2-carboxyaldehyde N-aryl imines) was prepared. Unfortunately, these are also stable to oxidation.
Resumo:
The role of metal-acceptor interactions arising from M–BR3 and M–PR3 bonding is discussed with respect to reactions between first-row transition metals and N2, H2, and CO. Thermally robust, S = 1/2 (TPB)Co(H2) and (TPB)Co(N2) complexes (TPB = tris(2- (diisopropylphosphino)phenyl)borane) are described and the energetics of N2 and H2 binding are measured. The H2 and N2 ligands are bound more weakly in the (TPB)Co complexes than in related (SiP3)M(L) complexes (SiP3 = tris(2- (diisopropylphosphino)phenyl)silyl). Comparisons within and between these two ligand platforms allow for the factors that affect N2 (and H2) binding and activation to be delineated. The characterization and reactivity of (DPB)Fe complexes (DPB = bis(2- (diisopropylphosphino)phenyl)phenylborane) in the context of N2 functionalization and E–H bond addition (E = H, C, N, Si) are described. This platform allows for the one-pot transformation of free N2 to an Fe hydrazido(-) complex via an Fe aminoimide intermediate. The principles learned from the N2 chemistry using (DPB)Fe are applied to CO reduction on the same system. The preparation of (DPB)Fe(CO)2 is described as well as its reductive functionalization to generate an unprecedented Fe dicarbyne. The bonding in this highly covalent complex is discussed in detail. Initial studies of the reactivity of the Fe dicarbyne reveal that a CO-derived olefin is released upon hydrogenation. Alternative approaches to uncovering unusual reactivity using metal- acceptor interactions are described in Chapters 5 and 6, including initial studies on a new π-accepting tridentate diphosphinosulfinyl ligand and strategies for designing ligands that undergo site-selective metallation to generate heterobimetallic complexes.
Resumo:
Some of the most exciting developments in the field of nucleic acid engineering include the utilization of synthetic nucleic acid molecular devices as gene regulators, as disease marker detectors, and most recently, as therapeutic agents. The common thread between these technologies is their reliance on the detection of specific nucleic acid input markers to generate some desirable output, such as a change in the copy number of an mRNA (for gene regulation), a change in the emitted light intensity (for some diagnostics), and a change in cell state within an organism (for therapeutics). The research presented in this thesis likewise focuses on engineering molecular tools that detect specific nucleic acid inputs, and respond with useful outputs.
Four contributions to the field of nucleic acid engineering are presented: (1) the construction of a single nucleotide polymorphism (SNP) detector based on the mechanism of hybridization chain reaction (HCR); (2) the utilization of a single-stranded oligonucleotide molecular Scavenger as a means of enhancing HCR selectivity; (3) the implementation of Quenched HCR, a technique that facilitates transduction of a nucleic acid chemical input into an optical (light) output, and (4) the engineering of conditional probes that function as sequence transducers, receiving target signal as input and providing a sequence of choice as output. These programmable molecular systems are conceptually well-suited for performing wash-free, highly selective rapid genotyping and expression profiling in vitro, in situ, and potentially in living cells.
Resumo:
A long-standing challenge in transition metal catalysis is selective C–C bond coupling of simple feedstocks, such as carbon monoxide, ethylene or propylene, to yield value-added products. This work describes efforts toward selective C–C bond formation using early- and late-transition metals, which may have important implications for the production of fuels and plastics, as well as many other commodity chemicals.
The industrial Fischer-Tropsch (F-T) process converts synthesis gas (syngas, a mixture of CO + H2) into a complex mixture of hydrocarbons and oxygenates. Well-defined homogeneous catalysts for F-T may provide greater product selectivity for fuel-range liquid hydrocarbons compared to traditional heterogeneous catalysts. The first part of this work involved the preparation of late-transition metal complexes for use in syngas conversion. We investigated C–C bond forming reactions via carbene coupling using bis(carbene)platinum(II) compounds, which are models for putative metal–carbene intermediates in F-T chemistry. It was found that C–C bond formation could be induced by either (1) chemical reduction of or (2) exogenous phosphine coordination to the platinum(II) starting complexes. These two mild methods afforded different products, constitutional isomers, suggesting that at least two different mechanisms are possible for C–C bond formation from carbene intermediates. These results are encouraging for the development of a multicomponent homogeneous catalysis system for the generation of higher hydrocarbons.
A second avenue of research focused on the design and synthesis of post-metallocene catalysts for olefin polymerization. The polymerization chemistry of a new class of group 4 complexes supported by asymmetric anilide(pyridine)phenolate (NNO) pincer ligands was explored. Unlike typical early transition metal polymerization catalysts, NNO-ligated catalysts produce nearly regiorandom polypropylene, with as many as 30-40 mol % of insertions being 2,1-inserted (versus 1,2-inserted), compared to <1 mol % in most metallocene systems. A survey of model Ti polymerization catalysts suggests that catalyst modification pathways that could affect regioselectivity, such as C–H activation of the anilide ring, cleavage of the amine R-group, or monomer insertion into metal–ligand bonds are unlikely. A parallel investigation of a Ti–amido(pyridine)phenolate polymerization catalyst, which features a five- rather than a six-membered Ti–N chelate ring, but maintained a dianionic NNO motif, revealed that simply maintaining this motif was not enough to produce regioirregular polypropylene; in fact, these experiments seem to indicate that only an intact anilide(pyridine)phenolate ligated-complex will lead to regioirregular polypropylene. As yet, the underlying causes for the unique regioselectivity of anilide(pyridine)phenolate polymerization catalysts remains unknown. Further exploration of NNO-ligated polymerization catalysts could lead to the controlled synthesis of new types of polymer architectures.
Finally, we investigated the reactivity of a known Ti–phenoxy(imine) (Ti-FI) catalyst that has been shown to be very active for ethylene homotrimerization in an effort to upgrade simple feedstocks to liquid hydrocarbon fuels through co-oligomerization of heavy and light olefins. We demonstrated that the Ti-FI catalyst can homo-oligomerize 1-hexene to C12 and C18 alkenes through olefin dimerization and trimerization, respectively. Future work will include kinetic studies to determine monomer selectivity by investigating the relative rates of insertion of light olefins (e.g., ethylene) vs. higher α-olefins, as well as a more detailed mechanistic study of olefin trimerization. Our ultimate goal is to exploit this catalyst in a multi-catalyst system for conversion of simple alkenes into hydrocarbon fuels.
Resumo:
A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.
In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.
In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.
One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.
The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.
Resumo:
The interactions of N2, formic acid and acetone on the Ru(001) surface are studied using thermal desorption mass spectrometry (TDMS), electron energy loss spectroscopy (EELS), and computer modeling.
Low energy electron diffraction (LEED), EELS and TDMS were used to study chemisorption of N2 on Ru(001). Adsorption at 75 K produces two desorption states. Adsorption at 95 K fills only the higher energy desorption state and produces a (√3 x √3)R30° LEED pattern. EEL spectra indicate both desorption states are populated by N2 molecules bonded "on-top" of Ru atoms.
Monte Carlo simulation results are presented on Ru(001) using a kinetic lattice gas model with precursor mediated adsorption, desorption and migration. The model gives good agreement with experimental data. The island growth rate was computed using the same model and is well fit by R(t)m - R(t0)m = At, with m approximately 8. The island size was determined from the width of the superlattice diffraction feature.
The techniques, algorithms and computer programs used for simulations are documented. Coordinate schemes for indexing sites on a 2-D hexagonal lattice, programs for simulation of adsorption and desorption, techniques for analysis of ordering, and computer graphics routines are discussed.
The adsorption of formic acid on Ru(001) has been studied by EELS and TDMS. Large exposures produce a molecular multilayer species. A monodentate formate, bidentate formate, and a hydroxyl species are stable intermediates in formic acid decomposition. The monodentate formate species is converted to the bidentate species by heating. Formic acid decomposition products are CO2, CO, H2, H2O and oxygen adatoms. The ratio of desorbed CO with respect to CO2 increases both with slower heating rates and with lower coverages.
The existence of two different forms of adsorbed acetone, side-on, bonded through the oxygen and acyl carbon, and end-on, bonded through the oxygen, have been verified by EELS. On Pt(111), only the end-on species is observed. On dean Ru(001) and p(2 x 2)O precovered Ru(001), both forms coexist. The side-on species is dominant on clean Ru(001), while O stabilizes the end-on form. The end-on form desorbs molecularly. Bonding geometry stability is explained by surface Lewis acidity and by comparison to organometallic coordination complexes.
Resumo:
A series of terl-butylperoxide complexes of hafnium, Cp*2Hf(R)(OOCMe3) (Cp* = ((η5-C5Me5); R = Cl, H, CH3, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2, CH=CHCMe3, C6H5, meta-C6H3(CH2)2) and Cp*(η5-C5(CH3)4CH2CH2CH2)Hf(OOCMe3), has been synthesized. One example has been structurally characterized, Cp*2Hf(OOCMe3)CH2CH3 crystallizes in space group P21/c, with a = 19.890(7)Å, b = 8.746(4)Å, c = 17.532(6)Å, β = 124.987(24)°, V = 2498(2)Å3, Z = 4 and RF = 0.054 (2222 reflections, I > 0). Despite the coordinative unsaturation of the hafnium center, the terl-butylperoxide ligand is coordinated in a mono-dentate ligand. The mode of decomposition of these species is highly dependent on the substituent R. For R = H, CH2CH3, CH2CH2CH3, CH2CH2CH2CH3, CH2CHMe2 a clean first order conversion to Cp*2Hf(OCMe3)(OR) is observed (for R CH2CH3, ΔHǂ = 19.6 kcal•mol-1, ΔSǂ = -13 e.u.). These results are discussed in terms of a two step mechanism involving η2-coordination of the terl-butylperoxide ligand. Homolytic O-O bond cleavage is observed upon heating of Cp*2Hf(OOCMe3) R (R = C6H6, meta-C6H3(CH3)2). In the presence of excess 9,10-dihydroanthracene thermolysis of Cp*2Hf(OOCMe3)C6H6 cleanly affords Cp*2Hf(C6H6)OH and HOCMe3 (ΔHǂ = 22.6 kcal•mol-1, ΔSǂ = -9 e.u.). The O-O bond strength in these complexes is thus estimated to be 22 kcal•mol-1.
Cp*2Ta(CH2)H, Cp*2Ta(CHC6H5)H, Cp*2Ta(C6H4)H, Cp*2Ta(CH2=CH2)H and Cp*2Ta(CH2=CHMe)H react, presumably through Cp*2Ta-R intermediates, with H2O to give Cp*2Ta(O)H and alkane. Cp*2Ta(O)H was structurally characterized: space group P21/n, a= 13.073(3)Å, b = 19.337(4)Å, c = 16.002(3)Å, β = 108.66(2)°, V = 3832(1)Å3, Z = 8 and RF = 0.0672 (6730 reflections). Reaction of terlbutylhydroperoxide with these same starting materials ultimately yields Cp*2Ta(O)R and HOCMe3. Cp*2Ta(CH2=CHR)OH species are proposed as intermediates in the olefin hydride reactions. Cp*2Ta(O2)R species can be generated from the reaction of the same starting materials and O2. Lewis acids have been shown to promote oxygen insertion in these complexes.
Resumo:
The thermal decomposition of Cp*Ti(CH_3)_2 (Cp*≡ ƞ^5-C_5Me_5) toluene solution follows cleanly first-order kinetics and produces a single titanium product Cp*(C_5Me_4CH_2)Ti(CH_3) concurrent with the evolution of one equivalent of methane. Labeling studies using Cp*_2Ti- (CD_3)_2 and (Cp*-d_(15))_2Ti(CH_3)_2 show the decomposition to be intramolecular and the methane to be produced by the coupling of a methyl group with a hydrogen from the other TiCH_3 group. Activation parameters, ΔH^‡ and ΔS^‡, and kinetic deuterium isotope effects have been measured. The alternative decomposition pathways of α-hydrogen abstraction and a-hydrogen elimination, both leading to a titanium-methylidene intermediate, are discussed.
The insertion of unactivated acetylenes into the metal-hydride bonds of Cp*_2MH_2 (M = Zr, Hf) proceeds rapidly at low temperature to form monoand/ or bisinsertion products, dependent upon the steric bulk of the acetylene substituents. Cp*_2M(H)(C(Me)=CHMe), Cp*_2M(H)(CH=CHCMe_3), Cp*_2M(H)-(CH=CHPh), Cp*_2M(CH=CHPh)_2, Cp*_2M(CH=CHCH_3)_2 and Cp*_2Zr- (CH=CHCH_2CH_3)_2 have been isolated and characterized. To extend the study of unsaturated-carbon ligands, Cp*_2M(C≡CCH_3)_2 have been prepared by treating Cp*_2MCl_2 with LiC≡CCH_3. The reactivity of many of these complexes with carbon monoxide and dihydrogen is surveyed. The mono(2- butenyl) complexes Cp*_2M(H)(C(Me)=CHMe) rearrange at room temperature, forming the crotyl-hydride species Cp*_2M(H)(ƞ^3-C_4H_7). The bis(propenyl) and bis(l-butenyl) zirconium complexes Cp*_2Zr(CH=CHR)_2 (R = CH_3, CH_2CH_3) also rearrange, forming zirconacyclopentenes. Labeling studies, reaction chemistry, and kinetic measurements, including deuterium isotope effects, demonstrate that the unusual 6-hydrogen elimination from an sp^2-hybridized carbon is the first step in these latter rearrangements but is not observed in the former. Details of these mechanisms and the differences in reactivity of the zirconium and hafnium complexes are discussed.
The reactions of hydride- and alkyl-carbonyl derivatives of permethylniobocene with equimolar amounts of trialkylaluminum reagents occur rapidly producing the carbonyl adducts Cp*_2Nb(R)(COAlR'_3) (R = H, CH_3, CH_2CH_3, CH_2CH_2Ph, C(Me)=CHMe; R' = Me, Et). The hydride adduct Cp*_2NbH_3•AlEt_3 has also been formed. In solution, each of these compounds exists in equilibrium with the uncomplexed species. The formation constants for Cp*_2Nb(H)(COA1R'_R) have been measured. They indicate the steric bulk of the Cp* ligands plays a deciding factor in the isolation of the first example of an aluminum Lewis acid bound to a carbonyl-oxygen in preference to a metalhydride. Reactions of Cp*_2Nb(H)CO with other Lewis acids and of the one:one adducts with H_2, CO and C_2H_4 are also discussed.
Cp*_2Nb(H)(C_2H_4) also reacts with equimolar amounts of trialkylaluminum reagents, forming a one:one complex that ^1H NMR spectroscopy indicates contains a Nb-CH_2CH_2-Al bridge. This adduct also exists in equilibrium with the uncomplexed species in solution. The formation constant for Cp*_2N+/b(H)(CH_2CH_2ĀlEt_3) has been measured. Reactions of Cp*_2Nb(H)(C_2H_4) with other Lewis acids and the reactions of Cp*_2N+b(H)- (CH_2CH_2ĀlEt_3) with CO and C_2H_4 are described, as are the reactions of Cp_*2Nb(H)(CH_2=CHR) (R = Me, Ph), Cp*_2Nb(H)(CH_3C≡CCH_3) and Cp*_2Ti-(C_2H_4) with AlEt_3.
Resumo:
Three separate topics, each stimulated by experiments, are treated theoretically in this dessertation: isotopic effects of ozone, electron transfer at interfaces, and intramolecular directional electron transfer in a supramolecular system.
The strange mass-independent isotope effect for the enrichment of ozone, which has been a puzzle in the literature for some 20 years, and the equally puzzling unconventional strong mass-dependent effect of individual reaction rate constants are studied as different aspects of a symmetry-driven behavior. A statistical (RRKM-based) theory with a hindered-rotor transition state is used. The individual rate constant ratios of recombination reactions at low pressures are calculated using the theory involving (1) small deviation from the statistical density of states for symmetric isotopomers, and (2) weak collisions for deactivation of the vibrationally excited ozone molecules. The weak collision and partitioning among exit channels play major roles in producing the large unconventional isotope effect in "unscrambled" systems. The enrichment studies reflect instead the non-statistical effect in "scrambled" systems. The theoretical results of low-pressure ozone enrichments and individual rate constant ratios obtained from these calculations are consistent with the corresponding experimental results. The isotopic exchange rate constant for the reaction ^(16)O + ^(18)O ^(18)O→+ ^(16)O ^(18)O + ^(18)O provides information on the nature of a variationally determined hindered-rotor transition state using experimental data at 130 K and 300 K. Pressure effects on the recombination rate constant, on the individual rate constant ratios and on the enrichments are also investigated. The theoretical results are consistent with the experimental data. The temperature dependence of the enrichment and rate constant ratios is also discussed, and experimental tests are suggested. The desirability of a more accurate potential energy surface for ozone in the transition state region is also noted.
Electron transfer reactions at semiconductor /liquid interfaces are studied using a tight-binding model for the semiconductors. The slab method and a z-transform method are employed in obtaining the tight-binding electronic structures of semiconductors having surfaces. The maximum electron transfer rate constants at Si/viologen^(2-/+) and InP /Me_(2)Fc^(+/O) interfaces are computed using the tight-binding type calculations for the solid and the extended-Huckel for the coupling to the redox agent at the interface. These electron transfer reactions are also studied using a free electron model for the semiconductor and the redox molecule, where Bardeen's method is adapted to calculate the coupling matrix element between the molecular and semiconductor electronic states. The calculated results for maximum rate constant of the electron transfer from the semiconductor bulk states are compared with the experimentally measured values of Lewis and coworkers, and are in reasonable agreement, without adjusting parameters. In the case of InP /liquid interface, the unusual current vs applied potential behavior is additionally interpreted, in part, by the presence of surface states.
Photoinduced electron transfer reactions in small supramolecular systems, such as 4-aminonaphthalimide compounds, are interesting in that there are, in principle, two alternative pathways (directions) for the electron transfer. The electron transfer, however, is unidirectional, as deduced from pH-dependent fluorescence quenching studies on different compounds. The role of electronic coupling matrix element and the charges in protonation are considered to explain the directionality of the electron transfer and other various results. A related mechanism is proposed to interpret the fluorescence behavior of similar molecules as fluorescent sensors of metal ions.
Resumo:
With the advent of well-defined ruthenium olefin metathesis catalysts that are highly active and stable to a variety of functional groups, the synthesis of complex organic molecules and polymers is now possible; this is reviewed in Chapter 1. The majority of the rest of this thesis describes the application of these catalysts towards the synthesis of novel polymers that may be useful in biological applications and investigations into their efficacy.
A method was developed to produce polyethers by metathesis, and this is described in Chapters 2 and 3. An unsaturated 12-crown-4 analog was made by template- directed ring-closing metathesis (RCM) and utilized as a monomer for the synthesis of unsaturated polyethers by ring-opening metathesis polymerization (ROMP). The yields were high and a range of molecular weights was accessible. In a similar manner, substituted polyethers with various backbones were synthesized: polymers with benzo groups along the backbone and various concentrations of amino acids were prepared. The results from in vitro toxicity tests of the unsubstituted polyethers are considered.
The conditions necessary to synthesize polynorbornenes with pendent bioactive peptides were explored as illustrated in Chapter 4. First, the polymerization of various norbornenyl monomers substituted with glycine, alanine or penta(ethylene glycol) is described. Then, the syntheses of polymers substituted with peptides GRGD and SRN, components of a cell binding domain of fibronectin, using newly developed ruthenium initiators are discussed.
In Chapter 5, the syntheses of homopolymers and a copolymer containing GRGDS and PHSRN, the more active forms of the peptides, are described. The ability of the polymers to inhibit human dermal fibroblast cell adhesion to fibronectin was assayed using an in vitro competitive inhibition assay, and the results are discussed. It was discovered that the copoymer substituted with both GRGDS and PHSR peptides was more active than both the GRGDS-containing homopolymer and the GRGDS free peptide.
Historically, one of the drawbacks to using metathesis is the removal of the residual ruthenium at the completion of the reaction. Chapter 6 describes a method where the water soluble tris(hydroxymethyl)phosphine is utilized to facilitate the removal of residual ruthenium from RCM reaction products.
Resumo:
The cytochromes P450 (P450s) are a remarkable class of heme enzymes that catalyze the metabolism of xenobiotics and the biosynthesis of signaling molecules. Controlled electron flow into the thiolate-ligated heme active site allows P450s to activate molecular oxygen and hydroxylate aliphatic C–H bonds via the formation of high-valent metal-oxo intermediates (compounds I and II). Due to the reactive nature and short lifetimes of these intermediates, many of the fundamental steps in catalysis have not been observed directly. The Gray group and others have developed photochemical methods, known as “flash-quench,” for triggering electron transfer (ET) and generating redox intermediates in proteins in the absence of native ET partners. Photo-triggering affords a high degree of temporal precision for the gating of an ET event; the initial ET and subsequent reactions can be monitored on the nanosecond-to-second timescale using transient absorption (TA) spectroscopies. Chapter 1 catalogues critical aspects of P450 structure and mechanism, including the native pathway for formation of compound I, and outlines the development of photochemical processes that can be used to artificially trigger ET in proteins. Chapters 2 and 3 describe the development of these photochemical methods to establish electronic communication between a photosensitizer and the buried P450 heme. Chapter 2 describes the design and characterization of a Ru-P450-BM3 conjugate containing a ruthenium photosensitizer covalently tethered to the P450 surface, and nanosecond-to-second kinetics of the photo-triggered ET event are presented. By analyzing data at multiple wavelengths, we have identified the formation of multiple ET intermediates, including the catalytically relevant compound II; this intermediate is generated by oxidation of a bound water molecule in the ferric resting state enzyme. The work in Chapter 3 probes the role of a tryptophan residue situated between the photosensitizer and heme in the aforementioned Ru-P450 BM3 conjugate. Replacement of this tryptophan with histidine does not perturb the P450 structure, yet it completely eliminates the ET reactivity described in Chapter 2. The presence of an analogous tryptophan in Ru-P450 CYP119 conjugates also is necessary for observing oxidative ET, but the yield of heme oxidation is lower. Chapter 4 offers a basic description of the theoretical underpinnings required to analyze ET. Single-step ET theory is first presented, followed by extensions to multistep ET: electron “hopping.” The generation of “hopping maps” and use of a hopping map program to analyze the rate advantage of hopping over single-step ET is described, beginning with an established rhenium-tryptophan-azurin hopping system. This ET analysis is then applied to the Ru-tryptophan-P450 systems described in Chapter 2; this strongly supports the presence of hopping in Ru-P450 conjugates. Chapter 5 explores the implementation of flash-quench and other phototriggered methods to examine the native reductive ET and gas binding events that activate molecular oxygen. In particular, TA kinetics that demonstrate heme reduction on the microsecond timescale for four Ru-P450 conjugates are presented. In addition, we implement laser flash-photolysis of P450 ferrous–CO to study the rates of CO rebinding in the thermophilic P450 CYP119 at variable temperature. Chapter 6 describes the development and implementation of air-sensitive potentiometric redox titrations to determine the solution reduction potentials of a series of P450 BM3 mutants, which were designed for non-native cyclopropanation of styrene in vivo. An important conclusion from this work is that substitution of the axial cysteine for serine shifts the wild type reduction potential positive by 130 mV, facilitating reduction by biological redox cofactors in the presence of poorly-bound substrates. While this mutation abolishes oxygenation activity, these mutants are capable of catalyzing the cyclopropanation of styrene, even within the confines of an E. coli cell. Four appendices are also provided, including photochemical heme oxidation in ruthenium-modified nitric oxide synthase (Appendix A), general protocols (Appendix B), Chapter-specific notes (Appendix C) and Matlab scripts used for data analysis (Appendix D).
Resumo:
The rate of electron transport between distant sites was studied. The rate depends crucially on the chemical details of the donor, acceptor, and surrounding medium. These reactions involve electron tunneling through the intervening medium and are, therefore, profoundly influenced by the geometry and energetics of the intervening molecules. The dependence of rate on distance was considered for several rigid donor-acceptor "linkers" of experimental importance. Interpretation of existing experiments and predictions for new experiments were made.
The electronic and nuclear motion in molecules is correlated. A Born-Oppenheimer separation is usually employed in quantum chemistry to separate this motion. Long distance electron transfer rate calculations require the total donor wave function when the electron is very far from its binding nuclei. The Born-Oppenheimer wave functions at large electronic distance are shown to be qualitatively wrong. A model which correctly treats the coupling was proposed. The distance and energy dependence of the electron transfer rate was determined for such a model.
Resumo:
Motivated by needs in molecular diagnostics and advances in microfabrication, researchers started to seek help from microfluidic technology, as it provides approaches to achieve high throughput, high sensitivity, and high resolution. One strategy applied in microfluidics to fulfill such requirements is to convert continuous analog signal into digitalized signal. One most commonly used example for this conversion is digital PCR, where by counting the number of reacted compartments (triggered by the presence of the target entity) out of the total number of compartments, one could use Poisson statistics to calculate the amount of input target.
However, there are still problems to be solved and assumptions to be validated before the technology is widely employed. In this dissertation, the digital quantification strategy has been examined from two angles: efficiency and robustness. The former is a critical factor for ensuring the accuracy of absolute quantification methods, and the latter is the premise for such technology to be practically implemented in diagnosis beyond the laboratory. The two angles are further framed into a “fate” and “rate” determination scheme, where the influence of different parameters is attributed to fate determination step or rate determination step. In this discussion, microfluidic platforms have been used to understand reaction mechanism at single molecule level. Although the discussion raises more challenges for digital assay development, it brings the problem to the attention of the scientific community for the first time.
This dissertation also contributes towards developing POC test in limited resource settings. On one hand, it adds ease of access to the tests by incorporating massively producible, low cost plastic material and by integrating new features that allow instant result acquisition and result feedback. On the other hand, it explores new isothermal chemistry and new strategies to address important global health concerns such as cyctatin C quantification, HIV/HCV detection and treatment monitoring as well as HCV genotyping.
Resumo:
The ritterazine and cephalostatin natural products have biological activities and structures that are interesting to synthetic organic chemists. These products have been found to exhibit significant cytotoxicity against P388 murine leukemia cells, and therefore have the potential to be used as anticancer drugs. The ritterazines and cephalostatins are steroidal dimers joined by a central pyrazine ring. Given that the steroid halves are unsymmetrical and highly oxygenated, there are several challenges in synthesizing these compounds in an organic laboratory.
Ritterazine B is the most potent derivative in the ritterazine family. Its biological activity is comparable to drugs that are being used to treat cancer today. For this reason, and the fact that there are no reported syntheses of ritterazine B to date, our lab set out to synthesize this natural product.
Herein, efforts toward the synthesis of the western fragment of ritterazine B are described. Two different routes are explored to access a common intermediate. An alkyne conjugate addition reaction was initially investigated due to the success of this key reaction in the synthesis of the eastern fragment. However, it has been found that a propargylation reaction has greater reactivity and yields, and has the potential to reduce the step count of the synthesis of the western fragment of ritterazine B.
Resumo:
Part I: An approach to the total synthesis of the triterpene shionone is described, which proceeds through the tetracyclic ketone i. The shionone side chain has been attached to this key intermediate in 5 steps, affording the olefin 2 in 29% yield. A method for the stereo-specific introduction of the angular methyl group at C-5 of shionone has been developed on a model system. The attempted utilization of this method to convert olefin 2 into shionone is described.
Part II: A method has been developed for activating the C-9 and C-10 positions of estrogenic steroids for substitution. Estrone has been converted to 4β,5β-epoxy-10β-hydroxyestr-3-one; cleavage of this epoxyketone using an Eschenmoser procedure, and subsequent modification of the product afforded 4-seco-9-estren-3,5-dione 3-ethylene acetal. This versatile intermediate, suitable for substitution at the 9 and/or 10 position, was converted to androst-4-ene-3-one by known procedures.