10 resultados para Stewart, Dennis

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design, synthesis, and characterization of two novel metalloprotein motifs is presented. The first project involved the design and construction of a protein motif which was programmed to form a tetradentate metal complex upon the addition of metal cations. The overall structure of the motif was based on a ββ super-secondary structure consisting of a flexible peptide sequence flanked by metal binding regions located at the carboxy and amino termini. The metal binding region near the amino terminus was constructed from a reverse turn motif with two metal ligating residues, (2R, 3R)-β-methyl-cysteine and histidine. Selection of the peptide sequence for this region was based on the conformational analysis of a series of tetrapeptides designed to form reverse turns in solution.

The stereospecific syntheses of a series of novel bipyridyl- and phenanthrolylsubstituted amino acids was carried out to provide ligands for the carboxy terminus metal binding region. These residues were incorporated into peptide sequences using solid phase peptide synthesis protocols, and metal binding studies indicated that the metal binding properties of these ligands was dictated by the specific regioisomer of the heteroaromatic ring and the peptide primary sequence.

Finally, a peptide containing optimized components for the metal binding regions was prepared to test the ability of the compound to form the desired intramolecular peptide:metal cation complexes. Metal binding studies demonstrated that the peptide formed monomeric complexes with very high metal cation binding affinities and that the two metal binding regions act cooperatively in the metal binding process. The use of these systems in the design of proteins capable of regulating naturally occurring proteins is discussed.

The second project involved the semisynthesis of two horse heart cytochrome c mutants incorporating the bipyridyl-amino acids at position 72 of the protein sequence. Structural studies on the proteins indicated that the bipyridyl amino acids had a neglible effect on the protein structure. One of the mutants was modified with Ru(bpy)_2^(+2) to form a redox-active protein, and the modified protein was found to have enhanced electron transfer properties between the heme and the introduced metal site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this thesis is to present new observations of thermal-infrared radiation from asteroids. Stellar photometry was performed to provide standards for comparison with the asteroid data. The details of the photometry and the data reduction are discussed in Part 1. A system of standard stars is derived for wavelengths of 8.5, 10.5 and 11.6 µm and a new calibration is adopted. Sources of error are evaluated and comparisons are made with the data of other observers.

The observations and analysis of the thermal-emission observations of asteroids are presented in Part 2. Thermal-emission lightcurve and phase effect data are considered. Special color diagrams are introduced to display the observational data. These diagrams are free of any model-dependent assumptions and show that asteroids differ in their surface properties.

On the basis of photometric models, (4) Vesta is thought to have a bolometric Bond albedo of about 0.1, an emissivity greater than 0.7 and a true radius that is close to the model value of 300^(+50)_(-30)km. Model albedos and model radii are given for asteroids 1, 2, 4, 5, 6, 7, 15, 19, 20, 27, 39, 44, 68, 80, 324 and 674. The asteroid (324) Bamberga is extremely dark with a model (~bolometric Bond) albedo in the 0.01 - 0.02 range, which is thought to be the lowest albedo yet measured for any solar-system body. The crucial question about such low-albedo asteroids is their number and the distribution of their orbits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrostatic mechanism for the flocculation of charged particles by polyelectrolytes of opposite charge is proposed. The difference between this and previous electrostatic coagulation mechanisms is the formation of charged polyion patches on the oppositely charged surfaces. The size of a patch is primarily a function of polymer molecular weight and the total patch area is a function of the amount of polymer adsorbed. The theoretical predictions of the model agree with the experimental dependence of the polymer dose required for flocculation on polymer molecular weight and solution ionic strength.

A theoretical analysis based on the Derjaguin-Landau, Verwey- Overbeek electrical double layer theory and statistical mechanical treatments of adsorbed polymer configurations indicates that flocculation of charged particles in aqueous solutions by polyelectrolytes of opposite charge does not occur by the commonly accepted polymerbridge mechanism.

A series of 1, 2-dimethyl-5 -vinylpyridinium bromide polymers with a molecular weight range of 6x10^3 to 5x10^6 was synthesized and used to flocculate dilute polystyrene latex and silica suspensions in solutions of various ionic strengths. It was found that with high molecular weight polymers and/or high ionic strengths the polymer dose required for flocculation is independent of molecular weight. With low molecular weights and/or low ionic strengths, the flocculation dose decreases with increasing molecular weight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arid and semiarid landscapes comprise nearly a third of the Earth's total land surface. These areas are coming under increasing land use pressures. Despite their low productivity these lands are not barren. Rather, they consist of fragile ecosystems vulnerable to anthropogenic disturbance.

The purpose of this thesis is threefold: (I) to develop and test a process model of wind-driven desertification, (II) to evaluate next-generation process-relevant remote monitoring strategies for use in arid and semiarid regions, and (III) to identify elements for effective management of the world's drylands.

In developing the process model of wind-driven desertification in arid and semiarid lands, field, remote sensing, and modeling observations from a degraded Mojave Desert shrubland are used. This model focuses on aeolian removal and transport of dust, sand, and litter as the primary mechanisms of degradation: killing plants by burial and abrasion, interrupting natural processes of nutrient accumulation, and allowing the loss of soil resources by abiotic transport. This model is tested in field sampling experiments at two sites and is extended by Fourier Transform and geostatistical analysis of high-resolution imagery from one site.

Next, the use of hyperspectral remote sensing data is evaluated as a substantive input to dryland remote monitoring strategies. In particular, the efficacy of spectral mixture analysis (SMA) in discriminating vegetation and soil types and detennining vegetation cover is investigated. The results indicate that hyperspectral data may be less useful than often thought in determining vegetation parameters. Its usefulness in determining soil parameters, however, may be leveraged by developing simple multispectral classification tools that can be used to monitor desertification.

Finally, the elements required for effective monitoring and management of arid and semiarid lands are discussed. Several large-scale multi-site field experiments are proposed to clarify the role of wind as a landscape and degradation process in dry lands. The role of remote sensing in monitoring the world's drylands is discussed in terms of optimal remote sensing platform characteristics and surface phenomena which may be monitored in order to identify areas at risk of desertification. A desertification indicator is proposed that unifies consideration of environmental and human variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last several decades there have been significant advances in the study and understanding of light behavior in nanoscale geometries. Entire fields such as those based on photonic crystals, plasmonics and metamaterials have been developed, accelerating the growth of knowledge related to nanoscale light manipulation. Coupled with recent interest in cheap, reliable renewable energy, a new field has blossomed, that of nanophotonic solar cells.

In this thesis, we examine important properties of thin-film solar cells from a nanophotonics perspective. We identify key differences between nanophotonic devices and traditional, thick solar cells. We propose a new way of understanding and describing limits to light trapping and show that certain nanophotonic solar cell designs can have light trapping limits above the so called ray-optic or ergodic limit. We propose that a necessary requisite to exceed the traditional light trapping limit is that the active region of the solar cell must possess a local density of optical states (LDOS) higher than that of the corresponding, bulk material. Additionally, we show that in addition to having an increased density of states, the absorber must have an appropriate incoupling mechanism to transfer light from free space into the optical modes of the device. We outline a portfolio of new solar cell designs that have potential to exceed the traditional light trapping limit and numerically validate our predictions for select cases.

We emphasize the importance of thinking about light trapping in terms of maximizing the optical modes of the device and efficiently coupling light into them from free space. To further explore these two concepts, we optimize patterns of superlattices of air holes in thin slabs of Si and show that by adding a roughened incoupling layer the total absorbed current can be increased synergistically. We suggest that the addition of a random scattering surface to a periodic patterning can increase incoupling by lifting the constraint of selective mode occupation associated with periodic systems.

Lastly, through experiment and simulation, we investigate a potential high efficiency solar cell architecture that can be improved with the nanophotonic light trapping concepts described in this thesis. Optically thin GaAs solar cells are prepared by the epitaxial liftoff process by removal from their growth substrate and addition of a metallic back reflector. A process of depositing large area nano patterns on the surface of the cells is developed using nano imprint lithography and implemented on the thin GaAs cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complexity in the earthquake rupture process can result from many factors. This study investigates the origin of such complexity by examining several recent, large earthquakes in detail. In each case the local tectonic environment plays an important role in understanding the source of the complexity.

Several large shallow earthquakes (Ms > 7.0) along the Middle American Trench have similarities and differences between them that may lead to a better understanding of fracture and subduction processes. They are predominantly thrust events consistent with the known subduction of the Cocos plate beneath N. America. Two events occurring along this subduction zone close to triple junctions show considerable complexity. This may be attributable to a more heterogeneous stress environment in these regions and as such has implications for other subduction zone boundaries.

An event which looks complex but is actually rather simple is the 1978 Bermuda earthquake (Ms ~ 6). It is located predominantly in the mantle. Its mechanism is one of pure thrust faulting with a strike N 20°W and dip 42°NE. Its apparent complexity is caused by local crustal structure. This is an important event in terms of understanding and estimating seismic hazard on the eastern seaboard of N. America.

A study of several large strike-slip continental earthquakes identifies characteristics which are common to them and may be useful in determining what to expect from the next great earthquake on the San Andreas fault. The events are the 1976 Guatemala earthquake on the Motagua fault and two events on the Anatolian fault in Turkey (the 1967, Mudurnu Valley and 1976, E. Turkey events). An attempt to model the complex P-waveforms of these events results in good synthetic fits for the Guatemala and Mudurnu Valley events. However, the E. Turkey event proves to be too complex as it may have associated thrust or normal faulting. Several individual sources occurring at intervals of between 5 and 20 seconds characterize the Guatemala and Mudurnu Valley events. The maximum size of an individual source appears to be bounded at about 5 x 1026 dyne-cm. A detailed source study including directivity is performed on the Guatemala event. The source time history of the Mudurnu Valley event illustrates its significance in modeling strong ground motion in the near field. The complex source time series of the 1967 event produces amplitudes greater by a factor of 2.5 than a uniform model scaled to the same size for a station 20 km from the fault.

Three large and important earthquakes demonstrate an important type of complexity --- multiple-fault complexity. The first, the 1976 Philippine earthquake, an oblique thrust event, represents the first seismological evidence for a northeast dipping subduction zone beneath the island of Mindanao. A large event, following the mainshock by 12 hours, occurred outside the aftershock area and apparently resulted from motion on a subsidiary fault since the event had a strike-slip mechanism.

An aftershock of the great 1960 Chilean earthquake on June 6, 1960, proved to be an interesting discovery. It appears to be a large strike-slip event at the main rupture's southern boundary. It most likely occurred on the landward extension of the Chile Rise transform fault, in the subducting plate. The results for this event suggest that a small event triggered a series of slow events; the duration of the whole sequence being longer than 1 hour. This is indeed a "slow earthquake".

Perhaps one of the most complex of events is the recent Tangshan, China event. It began as a large strike-slip event. Within several seconds of the mainshock it may have triggered thrust faulting to the south of the epicenter. There is no doubt, however, that it triggered a large oblique normal event to the northeast, 15 hours after the mainshock. This event certainly contributed to the great loss of life-sustained as a result of the Tangshan earthquake sequence.

What has been learned from these studies has been applied to predict what one might expect from the next great earthquake on the San Andreas. The expectation from this study is that such an event would be a large complex event, not unlike, but perhaps larger than, the Guatemala or Mudurnu Valley events. That is to say, it will most likely consist of a series of individual events in sequence. It is also quite possible that the event could trigger associated faulting on neighboring fault systems such as those occurring in the Transverse Ranges. This has important bearing on the earthquake hazard estimation for the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem in this investigation was to determine the stress and deflection patterns of a thick cantilever plate at various angles of sweepback.

The plate was tested at angles of sweepback of zero, twenty, forty, and sixty degrees under uniform shear load at the tip, uniformly distributed load and torsional loading.

For all angles of sweep and for all types of loading the area of critical stress is near the intersection of the root and trailing edge. Stresses near the leading edge at the root decreased rapidly with increase in angle of sweep for all types of loading. In the outer portion of the plate near the trailing edge the stresses due to the uniform shear and the uniformly distributed load did not vary for angles of sweep up to forty degrees. For the uniform shear and the uniformly distributed loads for all angles of sweep the area in which end effect is pronounced extends from the root to approximately three quarters of a chord length outboard of a line perpendicular to the axis of the plate through the trailing edge root. In case of uniform shear and uniformly distributed loads the deflections near the edge at seventy-five per cent semi-span decreased with increase in angle of sweep. Deflections near the trailing edge under the same loading conditions increased with increase in angle of sweep for small angles and then decreased at the higher angles of sweep. The maximum deflection due to torsional loading increased with increase in angle of sweep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I

Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.

The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.

Part II

A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.

The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.

Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general class of single degree of freedom systems possessing rate-independent hysteresis is defined. The hysteretic behavior in a system belonging to this class is depicted as a sequence of single-valued functions; at any given time, the current function is determined by some set of mathematical rules concerning the entire previous response of the system. Existence and uniqueness of solutions are established and boundedness of solutions is examined.

An asymptotic solution procedure is used to derive an approximation to the response of viscously damped systems with a small hysteretic nonlinearity and trigonometric excitation. Two properties of the hysteresis loops associated with any given system completely determine this approximation to the response: the area enclosed by each loop, and the average of the ascending and descending branches of each loop.

The approximation, supplemented by numerical calculations, is applied to investigate the steady-state response of a system with limited slip. Such features as disconnected response curves and jumps in response exist for a certain range of system parameters for any finite amount of slip.

To further understand the response of this system, solutions of the initial-value problem are examined. The boundedness of solutions is investigated first. Then the relationship between initial conditions and resulting steady-state solution is examined when multiple steady-state solutions exist. Using the approximate analysis and numerical calculations, it is found that significant regions of initial conditions in the initial condition plane lead to the different asymptotically stable steady-state solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of recent experiments have suggested the possibility of a highly inelastic resonance in K+p scattering. To study the inelastic K+p reactions, a 400 K exposure has been taken at the L.R.L. 25 inch bubble chamber. The data are spread over seven K+ momenta between 1.37 and 2.17 GeV/c.

Cross-sections have been measured for the reaction K+p → pK°π+ which is dominated by the quasi-two body channels K∆ and K*N. Both these channels are strongly peripheral, as at other momenta. The decay of the ∆ is in good agreement with the predictions of the rho-photon analogy of Stodolsky and Sakurai. The data on the K*p channel show evidence of both pseudo scalar and vector exchange.

Cross-sections for the final state pK+π+π- shows a strong contribution from the quasi-two body channel K*∆. This reaction is also very peripheral even at threshold. The decay angular distributions indicate the reaction is dominated as at higher momenta by a pion exchange mechanism. The data are also in good agreement with the quark model predictions of Bialas and Zalewski for the K* and ∆ decay.