10 resultados para Stability Analysis

em CaltechTHESIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs.

Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27.

Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value βd ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy.

All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post-Newtonian (1PN) order. The structures of the 1PN models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these 1PN neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change the critical value βd. A detailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects on the dynamical stability of these neutron stars.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The early stage of laminar-turbulent transition in a hypervelocity boundary layer is studied using a combination of modal linear stability analysis, transient growth analysis, and direct numerical simulation. Modal stability analysis is used to clarify the behavior of first and second mode instabilities on flat plates and sharp cones for a wide range of high enthalpy flow conditions relevant to experiments in impulse facilities. Vibrational nonequilibrium is included in this analysis, its influence on the stability properties is investigated, and simple models for predicting when it is important are described.

Transient growth analysis is used to determine the optimal initial conditions that lead to the largest possible energy amplification within the flow. Such analysis is performed for both spatially and temporally evolving disturbances. The analysis again targets flows that have large stagnation enthalpy, such as those found in shock tunnels, expansion tubes, and atmospheric flight at high Mach numbers, and clarifies the effects of Mach number and wall temperature on the amplification achieved. Direct comparisons between modal and non-modal growth are made to determine the relative importance of these mechanisms under different flow regimes.

Conventional stability analysis employs the assumption that disturbances evolve with either a fixed frequency (spatial analysis) or a fixed wavenumber (temporal analysis). Direct numerical simulations are employed to relax these assumptions and investigate the downstream propagation of wave packets that are localized in space and time, and hence contain a distribution of frequencies and wavenumbers. Such wave packets are commonly observed in experiments and hence their amplification is highly relevant to boundary layer transition prediction. It is demonstrated that such localized wave packets experience much less growth than is predicted by spatial stability analysis, and therefore it is essential that the bandwidth of localized noise sources that excite the instability be taken into account in making transition estimates. A simple model based on linear stability theory is also developed which yields comparable results with an enormous reduction in computational expense. This enables the amplification of finite-width wave packets to be taken into account in transition prediction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis we study the growth of a Li electrode-electrolyte interface in the presence of an elastic prestress. In particular, we focus our interest on Li-air batteries with a solid electrolyte, LIPON, which is a new type of secondary or rechargeable battery. Theoretical studies and experimental evidence show that during the process of charging the battery the replated lithium adds unevenly to the electrode surface. This phenomenon eventually leads to dendrite formation as the battery is charged and discharged numerous times. In order to suppress or alleviate this deleterious effect of dendrite growth, we put forth a study based on a linear stability analysis. Taking into account all the mechanisms of mass transport and interfacial kinetics, we model the evolution of the interface. We find that, in the absence of stress, the stability of a planar interface depends on interfacial diffusion properties and interfacial energy. Specifically, if Herring-Mullins capillarity-driven interfacial diffusion is accounted for, interfaces are unstable against all perturbations of wavenumber larger than a critical value. We find that the effect of an elastic prestress is always to stabilize planar interfacial growth by increasing the critical wavenumber for instability. A parametric study results in quantifying the extent of the prestress stabilization in a manner that can potentially be used in the design of Li-air batteries. Moreover, employing the theory of finite differences we numerically solve the equation that describes the evolution of the surface profile and present visualization results of the surface evolution by time. Lastly, numerical simulations performed in a commercial finite element software validate the theoretical formulation of the interfacial elastic energy change with respect to the planar interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis covers four different problems in the understanding of vortex sheets, and these are presented in four chapters.

In Chapter 1, free streamline theory is used to determine the steady solutions of an array of identical, hollow or stagnant core vortices in an inviscid, incompressible fluid. Assuming the array is symmetric to rotation through π radians about an axis through any vortex centre, there are two solutions or no solutions depending on whether A^(1/2)/L is less than or greater than 0.38 where A is the area of the vortex and L is the separation distance. Stability analysis shows that the more deformed shape is unstable to infinitesimal symmetric disturbances which leave the centres of the vortices undisplaced.

Chapter 2 is concerned with the roll-up of vortex sheets in homogeneous fluid. The flow over conventional and ring wings is used to test the method of Fink and Soh (1974). Despite modifications which improve the accuracy of the method, unphysical results occur. A possible explanation for this is that small scales are important and an alternate method based on "Cloud-in-Cell" techniques is introduced. The results show small scale growth and amalgamation into larger structures.

The motion of a buoyant pair of line vortices of opposite circulation is considered in Chapter 3. The density difference between the fluid carried by the vortices and the fluid outside is considered small, so that the Boussinesq approximation may be used. A macroscopic model is developed which shows the formation of a detrainment filament and this is included as a modification to the model. The results agree well with the numerical solution as developed by Hill (1975b) and show that after an initial slowdown, the vortices begin to accelerate downwards.

Chapter 4 reproduces completely a paper that has already been published (Baker, Barker, Bofah and Saffman (1974)) on the effect of "vortex wandering" on the measurement of velocity profiles of the trailing vortices behind a wing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.

We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.

We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work quantifies the nature of delays in genetic regulatory networks and their effect on system dynamics. It is known that a time lag can emerge from a sequence of biochemical reactions. Applying this modeling framework to the protein production processes, delay distributions are derived in a stochastic (probability density function) and deterministic setting (impulse function), whilst being shown to be equivalent under different assumptions. The dependence of the distribution properties on rate constants, gene length, and time-varying temperatures is investigated. Overall, the distribution of the delay in the context of protein production processes is shown to be highly dependent on the size of the genes and mRNA strands as well as the reaction rates. Results suggest longer genes have delay distributions with a smaller relative variance, and hence, less uncertainty in the completion times, however, they lead to larger delays. On the other hand large uncertainties may actually play a positive role, as broader distributions can lead to larger stability regions when this formalization of the protein production delays is incorporated into a feedback system.

Furthermore, evidence suggests that delays may play a role as an explicit design into existing controlling mechanisms. Accordingly, the reccurring dual-feedback motif is also investigated with delays incorporated into the feedback channels. The dual-delayed feedback is shown to have stabilizing effects through a control theoretic approach. Lastly, a distributed delay based controller design method is proposed as a potential design tool. In a preliminary study, the dual-delayed feedback system re-emerges as an effective controller design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents methods by which electrical analogies can be obtained for nonlinear systems. The accuracy of these methods is investigated and several specific types of nonlinear equations are studied in detail.

In Part I a general method is given for obtaining electrical analogs of nonlinear systems with one degree of freedom. Loop and node methods are compared and the stability of the loop analogy is briefly considered.

Parts II and III give a description of the equipment and a discussion of its accuracy. Comparisons are made between experimental and analytic solutions of linear systems.

Part IV is concerned with systems having a nonlinear restoring force. In particular, solutions of Duffing's equation are obtained, both by using the electrical analogy and also by approximate analytical methods.

Systems with nonlinear damping are considered in Part V. Two specific examples are chosen: (1) forced oscillations and (2) self-excited oscillations (van der Pol’s equation). Comparisons are made with approximate analytic solutions.

Part VI gives experimental data for a system obeying Mathieu's equation. Regions of stability are obtained. Examples of subharmonic, ultraharmonic, and ultrasubharmonic oscillat1ons are shown.