2 resultados para Speculation.
em CaltechTHESIS
Resumo:
Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads such as air conditioners, dish washers, and electric vehicles will also participate in the coming years. The electricity consumption of these smaller loads, which we call deferrable loads, can be shifted over time, and thus be used (in aggregate) to compensate for the random fluctuations in renewable generation.
In this thesis, we propose a real-time distributed deferrable load control algorithm to reduce the variance of aggregate load (load minus renewable generation) by shifting the power consumption of deferrable loads to periods with high renewable generation. The algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes the expected variance to go with updated predictions. We prove that suboptimality of this model predictive algorithm vanishes as time horizon expands in the average case analysis. Further, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance. Finally, we evaluate the algorithm via trace-based simulations.
Resumo:
Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.
In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.
As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.
Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.