6 resultados para Speaking

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demixing is the task of identifying multiple signals given only their sum and prior information about their structures. Examples of demixing problems include (i) separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis; (ii) decomposing an observed matrix into low-rank and sparse components; and (iii) identifying a binary codeword with impulsive corruptions. This thesis describes and analyzes a convex optimization framework for solving an array of demixing problems.

Our framework includes a random orientation model for the constituent signals that ensures the structures are incoherent. This work introduces a summary parameter, the statistical dimension, that reflects the intrinsic complexity of a signal. The main result indicates that the difficulty of demixing under this random model depends only on the total complexity of the constituent signals involved: demixing succeeds with high probability when the sum of the complexities is less than the ambient dimension; otherwise, it fails with high probability.

The fact that a phase transition between success and failure occurs in demixing is a consequence of a new inequality in conic integral geometry. Roughly speaking, this inequality asserts that a convex cone behaves like a subspace whose dimension is equal to the statistical dimension of the cone. When combined with a geometric optimality condition for demixing, this inequality provides precise quantitative information about the phase transition, including the location and width of the transition region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A classical question in combinatorics is the following: given a partial Latin square $P$, when can we complete $P$ to a Latin square $L$? In this paper, we investigate the class of textbf{$epsilon$-dense partial Latin squares}: partial Latin squares in which each symbol, row, and column contains no more than $epsilon n$-many nonblank cells. Based on a conjecture of Nash-Williams, Daykin and H"aggkvist conjectured that all $frac{1}{4}$-dense partial Latin squares are completable. In this paper, we will discuss the proof methods and results used in previous attempts to resolve this conjecture, introduce a novel technique derived from a paper by Jacobson and Matthews on generating random Latin squares, and use this novel technique to study $ epsilon$-dense partial Latin squares that contain no more than $delta n^2$ filled cells in total.

In Chapter 2, we construct completions for all $ epsilon$-dense partial Latin squares containing no more than $delta n^2$ filled cells in total, given that $epsilon < frac{1}{12}, delta < frac{ left(1-12epsilonright)^{2}}{10409}$. In particular, we show that all $9.8 cdot 10^{-5}$-dense partial Latin squares are completable. In Chapter 4, we augment these results by roughly a factor of two using some probabilistic techniques. These results improve prior work by Gustavsson, which required $epsilon = delta leq 10^{-7}$, as well as Chetwynd and H"aggkvist, which required $epsilon = delta = 10^{-5}$, $n$ even and greater than $10^7$.

If we omit the probabilistic techniques noted above, we further show that such completions can always be found in polynomial time. This contrasts a result of Colbourn, which states that completing arbitrary partial Latin squares is an NP-complete task. In Chapter 3, we strengthen Colbourn's result to the claim that completing an arbitrary $left(frac{1}{2} + epsilonright)$-dense partial Latin square is NP-complete, for any $epsilon > 0$.

Colbourn's result hinges heavily on a connection between triangulations of tripartite graphs and Latin squares. Motivated by this, we use our results on Latin squares to prove that any tripartite graph $G = (V_1, V_2, V_3)$ such that begin{itemize} item $|V_1| = |V_2| = |V_3| = n$, item For every vertex $v in V_i$, $deg_+(v) = deg_-(v) geq (1- epsilon)n,$ and item $|E(G)| > (1 - delta)cdot 3n^2$ end{itemize} admits a triangulation, if $epsilon < frac{1}{132}$, $delta < frac{(1 -132epsilon)^2 }{83272}$. In particular, this holds when $epsilon = delta=1.197 cdot 10^{-5}$.

This strengthens results of Gustavsson, which requires $epsilon = delta = 10^{-7}$.

In an unrelated vein, Chapter 6 explores the class of textbf{quasirandom graphs}, a notion first introduced by Chung, Graham and Wilson cite{chung1989quasi} in 1989. Roughly speaking, a sequence of graphs is called "quasirandom"' if it has a number of properties possessed by the random graph, all of which turn out to be equivalent. In this chapter, we study possible extensions of these results to random $k$-edge colorings, and create an analogue of Chung, Graham and Wilson's result for such colorings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For some time now, the Latino voice has been gradually gaining strength in American politics, particularly in such states as California, Florida, Illinois, New York, and Texas, where large numbers of Latino immigrants have settled and large numbers of electoral votes are at stake. Yet the issues public officials in these states espouse and the laws they enact often do not coincide with the interests and preferences of Latinos. The fact that Latinos in California and elsewhere have not been able to influence the political agenda in a way that is commensurate with their numbers may reflect their failure to participate fully in the political process by first registering to vote and then consistently turning out on election day to cast their ballots.

To understand Latino voting behavior, I first examine Latino political participation in California during the ten general elections of the 1980s and 1990s, seeking to understand what percentage of the eligible Latino population registers to vote, with what political party they register, how many registered Latinos to go the polls on election day, and what factors might increase their participation in politics. To ensure that my findings are not unique to California, I also consider Latino voter registration and turnout in Texas for the five general elections of the 1990s and compare these results with my California findings.

I offer a new approach to studying Latino political participation in which I rely on county-level aggregate data, rather than on individual survey data, and employ the ecological inference method of generalized bounds. I calculate and compare Latino and white voting-age populations, registration rates, turnout rates, and party affiliation rates for California's fifty-eight counties. Then, in a secondary grouped logit analysis, I consider the factors that influence these Latino and white registration, turnout, and party affiliation rates.

I find that California Latinos register and turn out at substantially lower rates than do whites and that these rates are more volatile than those of whites. I find that Latino registration is motivated predominantly by age and education, with older and more educated Latinos being more likely to register. Motor voter legislation, which was passed to ease and simplify the registration process, has not encouraged Latino registration . I find that turnout among California's Latino voters is influenced primarily by issues, income, educational attainment, and the size of the Spanish-speaking communities in which they reside. Although language skills may be an obstacle to political participation for an individual, the number of Spanish-speaking households in a community does not encourage or discourage registration but may encourage turnout, suggesting that cultural and linguistic assimilation may not be the entire answer.

With regard to party identification, I find that Democrats can expect a steady Latino political identification rate between 50 and 60 percent, while Republicans attract 20 to 30 percent of Latino registrants. I find that education and income are the dominant factors in determining Latino political party identification, which appears to be no more volatile than that of the larger electorate.

Next, when I consider registration and turnout in Texas, I find that Latino registration rates are nearly equal to those of whites but that Texas Latino turnout rates are volatile and substantially lower than those of whites.

Low turnout rates among Latinos and the volatility of these rates may explain why Latinos in California and Texas have had little influence on the political agenda even though their numbers are large and increasing. Simply put, the voices of Latinos are little heard in the halls of government because they do not turn out consistently to cast their votes on election day.

While these findings suggest that there may not be any short-term or quick fixes to Latino participation, they also suggest that Latinos should be encouraged to participate more fully in the political process and that additional education may be one means of achieving this goal. Candidates should speak more directly to the issues that concern Latinos. Political parties should view Latinos as crossover voters rather than as potential converts. In other words, if Latinos were "a sleeping giant," they may now be a still-drowsy leviathan waiting to be wooed by either party's persuasive political messages and relevant issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.

More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.

The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.

Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk metallic glasses (BMGs) maybe be considered to share some of the same inherent trade-offs as engineering ceramics. While BMGs typically exhibit high yield strengths, and while some have surprising fracture toughness, they exhibiting little to no tensile ductility, and fail in a brittle manner under uniaxial loading. Speaking broadly, there are two complimentary approaches to improving on these shortcomings: 1) create bulk metallic glass matrix composites (BMGMCs) and 2) improve the properties of a monolithic BMG. The structure of this thesis mirrors this division, with chapters 2-7 focusing on creating and processing amorphous metal matrix composites, and chapter 8 focusing on modifying the properties of a monolithic BGM by altering its configurational state through irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lattice anomalies and magnetic states in the (Fe100-xMnx)5Si3 alloys have been investigated. Contrary to what was previously reported, results of x-ray diffraction show a second phase (α') present in Fe-rich alloys and therefore strictly speaking a complete solid solution does not exist. Mössbauer spectra, measured as a function of composition and temperature, indicate the presence of two inequivalent sites, namely 6(g) site (designated as site I) and 4(d) (site II). A two-site model (TSM) has been introduced to interpret the experimental findings. The compositional variation of lattice parameters a and c, determined from the x-ray analysis, exhibits anomalies at x = 22.5 and x = 50, respectively. The former can be attributed to the effect of a ferromagnetic transition; while the latter is due to the effect of preferential substitution between Fe and Mn atoms according to TSM.

The reduced magnetization of these alloys deduced from magnetic hyperfine splittings has been correlated with the magnetic transition temperatures in terms of the molecular field theory. It has been found from both the Mössbauer effect and magnetization measurements that for composition 0 ≤ x ˂ 50 both sites I and II are ferromagnetic at liquid-nitrogen temperature and possess moments parallel to each other. In the composition range 50 ˂ x ≤ 100 , the site II is antiferromagnetic whereas site I is paramagnetic even at a temperature below the bulk Néel temperatures. In the vicinity of x = 50 however, site II is in a state of transition between ferromagnetism and antiferromagnetism. The present study also suggests that only Mn in site II are responsible for the antiferromagnetism in Mn5Si3 contrary to a previous report.

Electrical resistance has also been measured as a function of temperature and composition. The resistive anomalies observed in the Mn-rich alloys are believed to result from the effect of the antiferromagnetic Brillouin zone on the mobility of conduction electrons.