10 resultados para Spacecraft

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new analytic solution has been obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion with ĸr = constant and ĸƟ ∝ r2. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events have been observed with the Caltech Solar and Galactic Cosmic Ray Experiment aboard OGO-6. Detailed comparisons of the predictions of the new solution with these observations of 1-70 MeV protons show that the model adequately describes both the rise and decay times, indicating that ĸr = constant is a better description of conditions inside 1 AU than is ĸr ∝ r. With an outer boundary at 2.7 AU, a solar wind velocity of 400 km/sec, and a radial diffusion coefficient ĸr ≈ 2-8 x 1020 cm2/sec, the model gives reasonable fits to the time-profile of 1-10 MeV protons from "classical" flare-associated events. It is not necessary to invoke a scatter-free region near the sun in order to reproduce the fast rise times observed for directly-connected events. The new solution also yields a time-evolution for the vector anisotropy which agrees well with previously reported observations.

In addition, the new solution predicts that, during the decay phase, a typical convex spectral feature initially at energy To will move to lower energies at an exponential rate given by TKINK = Toexp(-t/ƬKINK). Assuming adiabatic deceleration and a boundary at 2.7 AU, the solution yields ƬKINK ≈ 100h, which is faster than the measured ~200h time constant and slower than the adiabatic rate of ~78h at 1 AU. Two possible explanations are that the boundary is at ~5 AU or that some other energy-change process is operative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a set of novel methods to biaxially package planar structures by folding and wrapping. The structure is divided into strips connected by folds that can slip during wrapping to accommodate material thickness. These packaging schemes are highly efficient, with theoretical packaging efficiencies approaching 100%. Packaging tests on meter-scale physical models have demonstrated packaging efficiencies of up to 83%. These methods avoid permanent deformation of the structure, allowing an initially flat structure to be deployed to a flat state.

Also presented are structural architectures and deployment schemes that are compatible with these packaging methods. These structural architectures use either in-plane pretension -- suitable for membrane structures -- or out-of-plane bending stiffness to resist loading. Physical models are constructed to realize these structural architectures. The deployment of these types of structures is shown to be controllable and repeatable by conducting experiments on lab-scale models.

These packaging methods, structural architectures, and deployment schemes are applicable to a variety of spacecraft structures such as solar power arrays, solar sails, antenna arrays, and drag sails; they have the potential to enable larger variants of these structures while reducing the packaging volume required. In this thesis, these methods are applied to the preliminary structural design of a space solar power satellite. This deployable spacecraft, measuring 60 m x 60 m, can be packaged into a cylinder measuring 1.5 m in height and 1 m in diameter. It can be deployed to a flat configuration, where it acts as a stiff lightweight support framework for multifunctional tiles that collect sunlight, generate electric power, and transmit it to a ground station on Earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 ≤ Z ≤ 28) and energy spectra (5 to 15 MeV /nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources: spectroscopy of the photosphere and corona, and solar wind measurements.

The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 ≤ Z ≤ 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events.

The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: The elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events.

The four-flare average SEP composition is in agreement with solar wind abundance results and with a number of recent coronal abundance measurements. The evidence for a common depletion of oxygen in SEPs, the corona and the solar wind relative to the photosphere suggests that the SEPs originate in the corona and that both the SEPs and solar wind sample a coronal composition which is significantly and persistently different from that of the photosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isotopic composition of hydrogen and helium in solar cosmic rays provides a means of studying solar flare particle acceleration mechanisms since the enhanced relative abundance of rare isotopes, such as 2H, 3H and 3He, is due to their production by inelastic nuclear collisions in the solar atmosphere during the flare. In this work the Caltech Electron/Isotope Spectrometer on the IMP-7 spacecraft has been used to measure this isotopic composition. The response of the dE/dx-E particle telescope is discussed and alpha particle channeling in thin detectors is identified as an important background source affecting measurement of low values of (3He/4He).

The following flare-averaged results are obtained for the period, October, 1972 - November, 1973: (2H/1H) = 7+10-6 X 10-6 (1.6 - 8.6 MeV/nuc), (3H/1H) less than 3.4 x 10-6 (1.2 - 6.8 MeV/nuc), (3He/4He) = (9 ± 4) x 10-3, (3He/1H) = (1.7 ± 0.7) x 10-4 (3.1 - 15.0 MeV/nuc). The deuterium and tritium ratios are significantly lower than the same ratios at higher energies, suggesting that the deuterium and tritium spectra are harder than that of the protons. They are, however, consistent with the same thin target model relativistic path length of ~ 1 g/cm2 (or equivalently ~ 0.3 g/cm2 at 30 MeV/nuc) which is implied by the higher energy results. The 3He results, consistent with previous observations, would imply a path length at least 3 times as long, but the observations may be contaminated by small 3He rich solar events.

During 1973 three "3He rich events," containing much more 3He than 2H or 3H were observed on 14 February, 29 June and 5 September. Although the total production cross sections for 2H,3H and 3He are comparable, an upper limit to (2H/3He) and (3H/3He) was 0.053 (2.9-6.8 MeV/nuc), summing over the three events. This upper limit is marginally consistent with Ramaty and Kozlovsky's thick target model which accounts for such events by the nuclear reaction kinematics and directional properties of the flare acceleration process. The 5 September event was particularly significant in that much more 3He was observed than 4He and the fluxes of 3He and 1H were about equal. The range of (3He/4He) for such events reported to date is 0.2 to ~ 6 while (3He/1H) extends from 10-3 to ~ 1. The role of backscattered and mirroring protons and alphas in accounting for such variations is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of solar energetic particles (SEPs) from 22 solar flares in the 1977-1982 time period are reported. The observations were made by the Cosmic Ray Subsystem on board the Voyager 1 and 2 spacecraft. SEP abundances have been obtained for all elements with 3 ≤ Z ≤ 30 except Li, Be, B. F, Sc, V, Co and Cu. for which upper limits have been obtained. Statistically meaningful abundances of several rare elements (e.g., P, Cl, K, Ti, Mn) have been determined for the first time, and the average abundances of the more abundant elements have been determined with improved precision, typically a factor of three better than the best previous determinations.

Previously reported results concerning the dependence of the fractionation of SEPs relative to photosphere on first ionization potential (FIP) have been confirmed and amplified upon with the new data. The monotonic Z-dependence of the variation between flares noted by earlier studies was found to be interpretable as a fractionation, produced by acceleration of the particles from the corona and their propagation through interplanetary space, which is ordered by the ionic charge-to-mass ratio Q/ M of the species making up the SEPs. It was found that Q/M is the primary organizing parameter of acceleration and propagation effects in SEPs, as evidenced by the dependence on Q/M of time, spatial and energy dependence within flares and of the abundance variability from flare to flare.

An unfractionated coronal composition was derived by applying a simple Q/M fractionation correction to the observed average SEP composition, to simultaneously correct for all Q/M-correlated acceleration/propagation fractionation of SEPs. The resulting coronal composition agrees well with current XUV/X-ray spectroscopic measurements of coronal composition but is of much higher precision and is available for a much larger set of elements. Compared to spectroscopic photospheric abundances, the SEP-derived corona appears depleted in C and somewhat enriched in Cr (and possibly Ca and Ti).

An unfractionated photospheric composition was derived by applying a simple FIP fractionation correction to the derived coronal composition, to correct for the FIP-associated fractionation of the corona during its formation from photospheric material. The resulting composition agrees well with the photospheric abundance tabulation of Grevesse (1984) except for an at least 50% lower abundance of C and a significantly greater abundance of Cr and possibly Ti. The results support the Grevesse photospheric Fe abundance, about 50% higher than meteoritic and earlier solar values. The SEP-derived photospheric composition is not generally of higher precision than the available spectroscopic data, but it relies on fewer physical parameters and is available for some elements (C, N, Ne, Ar) which cannot be measured spectroscopically in the photosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the data from the Heavy Nuclei Experiment on the HEAO-3 spacecraft has yielded the cosmic ray abundances of odd-even element pairs with atomic number, Z, in the range 33 ≤ Z ≤60, and the abundances of broad element groups in the range 62 ≤ Z ≤83, relative to iron. These data show that the cosmic ray source composition in this charge range is quite similar to that of the solar system provided an allowance is made for a source fractionation based on first ionization potential. The observations are inconsistent with a source composition which is dominated by either r-process or s-process material, whether or not an allowance is made for first ionization potential. Although the observations do not exclude a source containing the same mixture of r- and s-process material as in the solar system. the data are best fit by a source having an r- to s-process ratio of 1.22^(+0.25)_(0.21), relative to the solar system The abundances of secondary elements are consistent with the leaky box model of galactic propagation, implying a pathlength distribution similar to that which explains the abundances of nuclei with Z<29.

The energy spectra of the even elements in the range 38 ≤ Z ≤ 60 are found to have a deficiency of particles in the range ~1.5 to 3 GeV/amu, compared to iron. This deficiency may result from ionization energy loss in the interstellar medium, and is not predicted by propagation models which ignore such losses. ln addition, the energy spectra of secondary elements are found to be different to those of the primary elements. Such effects are consistent with observations of lighter nuclei, and are in qualitative agreement with galactic propagation models using a rigidity dependent escape length. The energy spectra of secondaries arising from the platinum group are found to be much steeper than those of lower Z. This effect may result from energy dependent fragmentation cross sections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An air filled ionization chamber has been constructed with a volume of 552 liters and a wall consisting of 12.7 mg/cm2 of plastic wrapped over a rigid, lightweight aluminum frame. A calibration in absolute units, independent of previous Caltech ion chamber calibrations, was applied to a sealed Neher electrometer for use in this chamber. The new chamber was flown along with an older, argon filled, balloon type chamber in a C-135 aircraft from 1,000 to 40,000 feet altitude, and other measurements of sea level cosmic ray ionization were made, resulting in the value of 2.60 ± .03 ion pairs/cm3 sec atm) at sea level. The calibrations of the two instruments were found to agree within 1 percent, and the airplane data were consistent with previous balloon measurements in the upper atmosphere. Ionization due to radon gas in the atmosphere was investigated. Absolute ionization data in the lower atmosphere have been compared with results of other observers, and discrepancies have been discussed.

Data from a polar orbiting ion chamber on the OGO-II, IV spacecraft have been analyzed. The problem of radioactivity produced on the spacecraft during passes through high fluxes of trapped protons has been investigated, and some corrections determined. Quiet time ionization averages over the polar regions have been plotted as function of altitude, and an analytical fit is made to the data that gives a value of 10.4 ± 2.3 percent for the fractional part of the ionization at the top of the atmosphere due to splash albedo particles, although this result is shown to depend on an assumed angular distribution for the albedo particles. Comparisons with other albedo measurements are made. The data are shown to be consistent with balloon and interplanetary ionization measurements. The position of the cosmic ray knee is found to exhibit an altitude dependence, a North-South effect, and a small local time variation.