14 resultados para Soil mechanics
em CaltechTHESIS
Resumo:
Two topics in plane strain perfect plasticity are studied using the method of characteristics. The first is the steady-state indentation of an infinite medium by either a rigid wedge having a triangular cross section or a smooth plate inclined to the direction of motion. Solutions are exact and results include deformation patterns and forces of resistance; the latter are also applicable for the case of incipient failure. Experiments on sharp wedges in clay, where forces and deformations are recorded, showed a good agreement with the mechanism of cutting assumed by the theory; on the other hand the indentation process for blunt wedges transforms into that of compression with a rigid part of clay moving with the wedge. Finite element solutions, for a bilinear material model, were obtained to establish a correspondence between the response of the plane strain wedge and its axi-symmetric counterpart, the cone. Results of the study afford a better understanding of the process of indentation of soils by penetrometers and piles as well as the mechanism of failure of deep foundations (piles and anchor plates).
The second topic concerns the plane strain steady-state free rolling of a rigid roller on clays. The problem is solved approximately for small loads by getting the exact solution of two problems that encompass the one of interest; the first is a steady-state with a geometry that approximates the one of the roller and the second is an instantaneous solution of the rolling process but is not a steady-state. Deformations and rolling resistance are derived. When compared with existing empirical formulae the latter was found to agree closely.
Resumo:
Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.
Resumo:
A model equation for water waves has been suggested by Whitham to study, qualitatively at least, the different kinds of breaking. This is an integro-differential equation which combines a typical nonlinear convection term with an integral for the dispersive effects and is of independent mathematical interest. For an approximate kernel of the form e^(-b|x|) it is shown first that solitary waves have a maximum height with sharp crests and secondly that waves which are sufficiently asymmetric break into "bores." The second part applies to a wide class of bounded kernels, but the kernel giving the correct dispersion effects of water waves has a square root singularity and the present argument does not go through. Nevertheless the possibility of the two kinds of breaking in such integro-differential equations is demonstrated.
Difficulties arise in finding variational principles for continuum mechanics problems in the Eulerian (field) description. The reason is found to be that continuum equations in the original field variables lack a mathematical "self-adjointness" property which is necessary for Euler equations. This is a feature of the Eulerian description and occurs in non-dissipative problems which have variational principles for their Lagrangian description. To overcome this difficulty a "potential representation" approach is used which consists of transforming to new (Eulerian) variables whose equations are self-adjoint. The transformations to the velocity potential or stream function in fluids or the scaler and vector potentials in electromagnetism often lead to variational principles in this way. As yet no general procedure is available for finding suitable transformations. Existing variational principles for the inviscid fluid equations in the Eulerian description are reviewed and some ideas on the form of the appropriate transformations and Lagrangians for fluid problems are obtained. These ideas are developed in a series of examples which include finding variational principles for Rossby waves and for the internal waves of a stratified fluid.
Resumo:
The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.
Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.
The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.
The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.
In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.
Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.
The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.
The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.
Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.
Resumo:
Lipid bilayer membranes are models for cell membranes--the structure that helps regulate cell function. Cell membranes are heterogeneous, and the coupling between composition and shape gives rise to complex behaviors that are important to regulation. This thesis seeks to systematically build and analyze complete models to understand the behavior of multi-component membranes.
We propose a model and use it to derive the equilibrium and stability conditions for a general class of closed multi-component biological membranes. Our analysis shows that the critical modes of these membranes have high frequencies, unlike single-component vesicles, and their stability depends on system size, unlike in systems undergoing spinodal decomposition in flat space. An important implication is that small perturbations may nucleate localized but very large deformations. We compare these results with experimental observations.
We also study open membranes to gain insight into long tubular membranes that arise for example in nerve cells. We derive a complete system of equations for open membranes by using the principle of virtual work. Our linear stability analysis predicts that the tubular membranes tend to have coiling shapes if the tension is small, cylindrical shapes if the tension is moderate, and beading shapes if the tension is large. This is consistent with experimental observations reported in the literature in nerve fibers. Further, we provide numerical solutions to the fully nonlinear equilibrium equations in some problems, and show that the observed mode shapes are consistent with those suggested by linear stability. Our work also proves that beadings of nerve fibers can appear purely as a mechanical response of the membrane.
Resumo:
Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the hanging wall. Fault opening rates indicate that the hanging and foot walls detach near the earth surface, a phenomenon promoted by a decrease in magnitude of far-field tectonic loads. Subsequent shutting of the fault sends an opening pulse back down-dip. In case of a sub-Rayleigh earthquake, feedback from the reflected S wave re-ruptures the locked fault at super-shear speeds, providing another mechanism of super-shear transition.
Resumo:
The lateral migration of neutrally buoyant rigid spheres in two-dimensional unidirectional flows was studied theoretically. The cases of both inertia-induced migration in a Newtonian fluid and normal stress-induced migration in a second-order fluid were considered. Analytical results for the lateral velocities were obtained, and the equilibrium positions and trajectories of the spheres compared favorably with the experimental data available in the literature. The effective viscosity was obtained for a dilute suspension of spheres which were simultaneously undergoing inertia-induced migration and translational Brownian motion in a plane Poiseuille flow. The migration of spheres suspended in a second-order fluid inside a screw extruder was also considered.
The creeping motion of neutrally buoyant concentrically located Newtonian drops through a circular tube was studied experimentally for drops which have an undeformed radius comparable to that of the tube. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop due to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow were obtained for various viscosity ratios, total flow rates, and drop sizes. The results were compared with existing theoretical and experimental data.
Resumo:
We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. This led to predictions of improved materials, some of which were subsequently validated with experiments by our collaborators.
In part I, the challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface, and hence we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine all intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We found that the rate determination step (RDS) was the Oad hydration reaction (Oad + H2Oad -> OHad + OHad) in both cases, but that the barrier for pure Pt of 0.50 eV is reduced to 0.48 eV for Pt3Os, which at 80 degrees C would increase the rate by 218%. We collaborated with the Pu-Wei Wu’s group to carry out experiments, where we found that the dealloying process-treated Pt2Os catalyst showed two-fold higher activity at 25 degrees C than pure Pt and that the alloy had 272% improved stability, validating our theoretical predictions.
We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML/Os core-shell). We found that Pt2ML/Os has the highest activity (compared to pure Pt and to the Pt3Os alloy) because the 0.37 eV barrier decreases to 0.23 eV. To understand what aspects of the core shell structure lead to this improved performance, we considered the effect on ORR of compressing the alloy slab to the dimensions of pure Pt. However this had little effect, with the same RDS barrier 0.37 eV. This shows that the ligand effect (the electronic structure modification resulting from the Os substrate) plays a more important role than the strain effect, and is responsible for the improved activity of the core- shell catalyst. Experimental materials characterization proves the core-shell feature of our catalyst. The electrochemical experiment for Pt2ML/Os/C showed 3.5 to 5 times better ORR activity at 0.9V (vs. NHE) in 0.1M HClO4 solution at 25 degrees C as compared to those of commercially available Pt/C. The excellent correlation between experimental half potential and the OH binding energies and RDS barriers validate the feasibility of predicting catalyst activity using QM calculation and a simple Langmuir–Hinshelwood model.
In part II, we used QM calculations to study methane stream reforming on a Ni-alloy catalyst surfaces for solid oxide fuel cell (SOFC) application. SOFC has wide fuel adaptability but the coking and sulfur poisoning will reduce its stability. Experimental results suggested that the Ni4Fe alloy improves both its activity and stability compared to pure Ni. To understand the atomistic origin of this, we carried out QM calculations on surface segregation and found that the most stable configuration for Ni4Fe has a Fe atom distribution of (0%, 50%, 25%, 25%, 0%) starting at the bottom layer. We calculated that the binding of C atoms on the Ni4Fe surface is 142.9 Kcal/mol, which is about 10 Kcal/mol weaker compared to the pure Ni surface. This weaker C binding energy is expected to make coke formation less favorable, explaining why Ni4Fe has better coking resistance. This result confirms the experimental observation. The reaction energy barriers for CHx decomposition and C binding on various alloy surface, Ni4X (X=Fe, Co, Mn, and Mo), showed Ni4Fe, Ni4Co, and Fe4Mn all have better coking resistance than pure Ni, but that only Ni4Fe and Fe4Mn have (slightly) improved activity compared to pure Ni.
In part III, we used QM to examine the proton transport in doped perovskite-ceramics. Here we used a 2x2x2 supercell of perovskite with composition Ba8X7M1(OH)1O23 where X=Ce or Zr and M=Y, Gd, or Dy. Thus in each case a 4+ X is replace by a 3+ M plus a proton on one O. Here we predicted the barriers for proton diffusion allowing both includes intra-octahedron and inter-octahedra proton transfer. Without any restriction, we only observed the inter-octahedra proton transfer with similar energy barrier as previous computational work but 0.2 eV higher than experimental result for Y doped zirconate. For one restriction in our calculations is that the Odonor-Oacceptor atoms were kept at fixed distances, we found that the barrier difference between cerates/zirconates with various dopants are only 0.02~0.03 eV. To fully address performance one would need to examine proton transfer at grain boundaries, which will require larger scale ReaxFF reactive dynamics for systems with millions of atoms. The QM calculations used here will be used to train the ReaxFF force field.
Resumo:
The purpose of this investigation was to determine whether landslides could be predicted for hill slopes of known inclinations from data secured by laboratory tests performed on samples of the ground under consideration. Specifically, the investigation was to show whether a correlation existed between experimentally determined values for friction and cohesion of ground and calculated values based upon the configuration of earth masses that had slid. The ability to determine the stability of slopes from experimental data is of obvious significance.
Resumo:
Erosion is concentrated in steep landscapes such that, despite accounting for only a small fraction of Earth’s total surface area, these areas regulate the flux of sediment to downstream basins, and their rugged morphology records transient changes (or lack thereof) in geologic and climatic forcing. Steep landscapes are geomorphically active; large sediment fluxes and rapid landscape evolution rates can create or destroy habitat for humans and wildlife alike, and landslides, debris flows, and floods common in mountainous areas represent a persistent natural and structural hazard. Despite the central role that steep landscapes play in the geosciences and in landscape management, the processes controlling their evolution have been poorly studied compared to lower-gradient areas. This thesis focuses on the basic mechanics of sediment transport and bedrock incision in steep landscapes, as these are the fundamental processes which set the pace and style of landscape evolution. Chapter 1 examines the spatial distribution of slow-moving landslides; these landslides can dominate sediment fluxes to river networks, but the controls on their occurrence are poorly understood. Using a case-study along the San Andreas Fault, California, I show that slow-moving landslides preferentially occur near the fault, suggesting a rock-strength control on landslide distribution. Chapter 2 provides the first field-measurements of incipient sediment motion in streams steeper than 14% and shows a large influence of slope-dependent flow hydraulics and grain-scale roughness on particle motion. Chapter 3 presents experimental evidence for bedrock erosion by suspended sediment, suggesting that, in contrast to prevailing theoretical predictions, suspension-regime transport in steep streams can be the dominant erosion agent. Steep streams are often characterized by the presence of waterfalls and bedrock steps which can have locally high rates of erosion; Chapters 4 and 5 present newly developed, experimentally validated theory on sediment transport through and bedrock erosion in waterfall plunge pools. Finally, Chapter 6 explores the formation of a bedrock slot canyon where interactions between sediment transport and bedrock incision lead to the formation of upstream-propagating bedrock step-pools and waterfalls.
Resumo:
Three different categories of flow problems of a fluid containing small particles are being considered here. They are: (i) a fluid containing small, non-reacting particles (Parts I and II); (ii) a fluid containing reacting particles (Parts III and IV); and (iii) a fluid containing particles of two distinct sizes with collisions between two groups of particles (Part V).
Part I
A numerical solution is obtained for a fluid containing small particles flowing over an infinite disc rotating at a constant angular velocity. It is a boundary layer type flow, and the boundary layer thickness for the mixture is estimated. For large Reynolds number, the solution suggests the boundary layer approximation of a fluid-particle mixture by assuming W = Wp. The error introduced is consistent with the Prandtl’s boundary layer approximation. Outside the boundary layer, the flow field has to satisfy the “inviscid equation” in which the viscous stress terms are absent while the drag force between the particle cloud and the fluid is still important. Increase of particle concentration reduces the boundary layer thickness and the amount of mixture being transported outwardly is reduced. A new parameter, β = 1/Ω τv, is introduced which is also proportional to μ. The secondary flow of the particle cloud depends very much on β. For small values of β, the particle cloud velocity attains its maximum value on the surface of the disc, and for infinitely large values of β, both the radial and axial particle velocity components vanish on the surface of the disc.
Part II
The “inviscid” equation for a gas-particle mixture is linearized to describe the flow over a wavy wall. Corresponding to the Prandtl-Glauert equation for pure gas, a fourth order partial differential equation in terms of the velocity potential ϕ is obtained for the mixture. The solution is obtained for the flow over a periodic wavy wall. For equilibrium flows where λv and λT approach zero and frozen flows in which λv and λT become infinitely large, the flow problem is basically similar to that obtained by Ackeret for a pure gas. For finite values of λv and λT, all quantities except v are not in phase with the wavy wall. Thus the drag coefficient CD is present even in the subsonic case, and similarly, all quantities decay exponentially for supersonic flows. The phase shift and the attenuation factor increase for increasing particle concentration.
Part III
Using the boundary layer approximation, the initial development of the combustion zone between the laminar mixing of two parallel streams of oxidizing agent and small, solid, combustible particles suspended in an inert gas is investigated. For the special case when the two streams are moving at the same speed, a Green’s function exists for the differential equations describing first order gas temperature and oxidizer concentration. Solutions in terms of error functions and exponential integrals are obtained. Reactions occur within a relatively thin region of the order of λD. Thus, it seems advantageous in the general study of two-dimensional laminar flame problems to introduce a chemical boundary layer of thickness λD within which reactions take place. Outside this chemical boundary layer, the flow field corresponds to the ordinary fluid dynamics without chemical reaction.
Part IV
The shock wave structure in a condensing medium of small liquid droplets suspended in a homogeneous gas-vapor mixture consists of the conventional compressive wave followed by a relaxation region in which the particle cloud and gas mixture attain momentum and thermal equilibrium. Immediately following the compressive wave, the partial pressure corresponding to the vapor concentration in the gas mixture is higher than the vapor pressure of the liquid droplets and condensation sets in. Farther downstream of the shock, evaporation appears when the particle temperature is raised by the hot surrounding gas mixture. The thickness of the condensation region depends very much on the latent heat. For relatively high latent heat, the condensation zone is small compared with ɅD.
For solid particles suspended initially in an inert gas, the relaxation zone immediately following the compression wave consists of a region where the particle temperature is first being raised to its melting point. When the particles are totally melted as the particle temperature is further increased, evaporation of the particles also plays a role.
The equilibrium condition downstream of the shock can be calculated and is independent of the model of the particle-gas mixture interaction.
Part V
For a gas containing particles of two distinct sizes and satisfying certain conditions, momentum transfer due to collisions between the two groups of particles can be taken into consideration using the classical elastic spherical ball model. Both in the relatively simple problem of normal shock wave and the perturbation solutions for the nozzle flow, the transfer of momentum due to collisions which decreases the velocity difference between the two groups of particles is clearly demonstrated. The difference in temperature as compared with the collisionless case is quite negligible.
Resumo:
My focus in this thesis is to contribute to a more thorough understanding of the mechanics of ice and deformable glacier beds. Glaciers flow under their own weight through a combination of deformation within the ice column and basal slip, which involves both sliding along and deformation within the bed. Deformable beds, which are made up of unfrozen sediment, are prevalent in nature and are often the primary contributors to ice flow wherever they are found. Their granular nature imbues them with unique mechanical properties that depend on the granular structure and hydrological properties of the bed. Despite their importance for understanding glacier flow and the response of glaciers to changing climate, the mechanics of deformable glacier beds are not well understood.
Our general approach to understanding the mechanics of bed deformation and their effect on glacier flow is to acquire synoptic observations of ice surface velocities and their changes over time and to use those observations to infer the mechanical properties of the bed. We focus on areas where changes in ice flow over time are due to known environmental forcings and where the processes of interest are largely isolated from other effects. To make this approach viable, we further develop observational methods that involve the use of mapping radar systems. Chapters 2 and 5 focus largely on the development of these methods and analysis of results from ice caps in central Iceland and an ice stream in West Antarctica. In Chapter 3, we use these observations to constrain numerical ice flow models in order to study the mechanics of the bed and the ice itself. We show that the bed in an Iceland ice cap deforms plastically and we derive an original mechanistic model of ice flow over plastically deforming beds that incorporates changes in bed strength caused by meltwater flux from the surface. Expanding on this work in Chapter 4, we develop a more detailed mechanistic model for till-covered beds that helps explain the mechanisms that cause some glaciers to surge quasi-periodically. In Antarctica, we observe and analyze the mechanisms that allow ocean tidal variations to modulate ice stream flow tens of kilometers inland. We find that the ice stream margins are significantly weakened immediately upstream of the area where ice begins to float and that this weakening likely allows changes in stress over the floating ice to propagate through the ice column.
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Resumo:
The Everett interpretation of quantum mechanics is an increasingly popular alternative to the traditional Copenhagen interpretation, but there are a few major issues that prevent the widespread adoption. One of these issues is the origin of probabilities in the Everett interpretation, which this thesis will attempt to survey. The most successful resolution of the probability problem thus far is the decision-theoretic program, which attempts to frame probabilities as outcomes of rational decision making. This marks a departure from orthodox interpretations of probabilities in the physical sciences, where probabilities are thought to be objective, stemming from symmetry considerations. This thesis will attempt to offer evaluations on the decision-theoretic program.