3 resultados para Small central hydroelectric. eng

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The long- and short-period body waves of a number of moderate earthquakes occurring in central and southern California recorded at regional (200-1400 km) and teleseismic (> 30°) distances are modeled to obtain the source parameters-focal mechanism, depth, seismic moment, and source time history. The modeling is done in the time domain using a forward modeling technique based on ray summation. A simple layer over a half space velocity model is used with additional layers being added if necessary-for example, in a basin with a low velocity lid.

The earthquakes studied fall into two geographic regions: 1) the western Transverse Ranges, and 2) the western Imperial Valley. Earthquakes in the western Transverse Ranges include the 1987 Whittier Narrows earthquake, several offshore earthquakes that occurred between 1969 and 1981, and aftershocks to the 1983 Coalinga earthquake (these actually occurred north of the Transverse Ranges but share many characteristics with those that occurred there). These earthquakes are predominantly thrust faulting events with the average strike being east-west, but with many variations. Of the six earthquakes which had sufficient short-period data to accurately determine the source time history, five were complex events. That is, they could not be modeled as a simple point source, but consisted of two or more subevents. The subevents of the Whittier Narrows earthquake had different focal mechanisms. In the other cases, the subevents appear to be the same, but small variations could not be ruled out.

The recent Imperial Valley earthquakes modeled include the two 1987 Superstition Hills earthquakes and the 1969 Coyote Mountain earthquake. All are strike-slip events, and the second 1987 earthquake is a complex event With non-identical subevents.

In all the earthquakes studied, and particularly the thrust events, constraining the source parameters required modeling several phases and distance ranges. Teleseismic P waves could provide only approximate solutions. P_(nl) waves were probably the most useful phase in determining the focal mechanism, with additional constraints supplied by the SH waves when available. Contamination of the SH waves by shear-coupled PL waves was a frequent problem. Short-period data were needed to obtain the source time function.

In addition to the earthquakes mentioned above, several historic earthquakes were also studied. Earthquakes that occurred before the existence of dense local and worldwide networks are difficult to model due to the sparse data set. It has been noticed that earthquakes that occur near each other often produce similar waveforms implying similar source parameters. By comparing recent well studied earthquakes to historic earthquakes in the same region, better constraints can be placed on the source parameters of the historic events.

The Lompoc earthquake (M=7) of 1927 is the largest offshore earthquake to occur in California this century. By direct comparison of waveforms and amplitudes with the Coalinga and Santa Lucia Banks earthquakes, the focal mechanism (thrust faulting on a northwest striking fault) and long-period seismic moment (10^(26) dyne cm) can be obtained. The S-P travel times are consistent with an offshore location, rather than one in the Hosgri fault zone.

Historic earthquakes in the western Imperial Valley were also studied. These events include the 1942 and 1954 earthquakes. The earthquakes were relocated by comparing S-P and R-S times to recent earthquakes. It was found that only minor changes in the epicenters were required but that the Coyote Mountain earthquake may have been more severely mislocated. The waveforms as expected indicated that all the events were strike-slip. Moment estimates were obtained by comparing the amplitudes of recent and historic events at stations which recorded both. The 1942 event was smaller than the 1968 Borrego Mountain earthquake although some previous studies suggested the reverse. The 1954 and 1937 earthquakes had moments close to the expected value. An aftershock of the 1942 earthquake appears to be larger than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let PK, L(N) be the number of unordered partitions of a positive integer N into K or fewer positive integer parts, each part not exceeding L. A distribution of the form

Ʃ/N≤x PK,L(N)

is considered first. For any fixed K, this distribution approaches a piecewise polynomial function as L increases to infinity. As both K and L approach infinity, this distribution is asymptotically normal. These results are proved by studying the convergence of the characteristic function.

The main result is the asymptotic behavior of PK,K(N) itself, for certain large K and N. This is obtained by studying a contour integral of the generating function taken along the unit circle. The bulk of the estimate comes from integrating along a small arc near the point 1. Diophantine approximation is used to show that the integral along the rest of the circle is much smaller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation focuses on the incorporation of non-innocent or multifunctional moieties into different ligand scaffolds to support one or multiple metal centers in close proximity. Chapter 2 focuses on the initial efforts to synthesize hetero- or homometallic tri- or dinuclear metal carbonyl complexes supported by para-terphenyl diphosphine ligands. A series of [M2M’(CO)4]-type clusters (M = Ni, Pd; M’ = Fe, Co) could be accessed and used to relate the metal composition to the properties of the complexes. During these studies it was also found that non-innocent behavior was observed in dinuclear Fe complexes that result from changes in oxidation state of the cluster. These studies led to efforts to rationally incorporate central arene moieties capable managing both protons and electrons during small molecule activation.

Chapter 3 discusses the synthesis of metal complexes supported by a novel para-terphenyl diphosphine ligand containing a non-innocent 1,4-hydroquinone moiety as the central arene. A Pd0-hydroquinone complex was found to mediate the activation of a variety of small molecules to form the corresponding Pd0-quinone complexes in a formal two proton ⁄ two electron transformation. Mechanistic investigations of dioxygen activation revealed a metal-first activation process followed by subsequent proton and electron transfer from the ligand. These studies revealed the capacity of the central arene substituent to serve as a reservoir for a formal equivalent of dihydrogen, although the stability of the M-quinone compounds prevented access to the PdII-quinone oxidation state, thus hindering of small molecule transformations requiring more than two electrons per equivalent of metal complex.

Chapter 4 discusses the synthesis of metal complexes supported by a ligand containing a 3,5-substituted pyridine moiety as the linker separating the phenylene phosphine donors. Nickel and palladium complexes supported by this ligand were found to tolerate a wide variety of pyridine nitrogen-coordinated electrophiles which were found to alter central pyridine electronics, and therefore metal-pyridine π-system interactions, substantially. Furthermore, nickel complexes supported by this ligand were found to activate H-B and H-Si bonds and formally hydroborate and hydrosilylate the central pyridine ring. These systems highlight the potential use of pyridine π-system-coordinated metal complexes to reversibly store reducing equivalents within the ligand framework in a manner akin to the previously discussed 1,4-hydroquinone diphosphine ligand scaffold.

Chapter 5 departs from the phosphine-based chemistry and instead focuses on the incorporation of hydrogen bonding networks into the secondary coordination sphere of [Fe44-O)]-type clusters supported by various pyrazolate ligands. The aim of this project is to stabilize reactive oxygenic species, such as oxos, to study their spectroscopy and reactivity in the context of complicated multimetallic clusters. Herein is reported this synthesis and electrochemical and Mössbauer characterization of a series of chloride clusters have been synthesized using parent pyrazolate and a 3-aminophenyl substituted pyrazolate ligand. Efforts to rationally access hydroxo and oxo clusters from these chloride precursors represents ongoing work that will continue in the group.

Appendix A discusses attempts to access [Fe3Ni]-type clusters as models of the enzymatic active site of [NiFe] carbon monoxide dehydrogenase. Efforts to construct tetranuclear clusters with an interstitial sulfide proved unsuccessful, although a (μ3-S) ligand could be installed through non-oxidative routes into triiron clusters. While [Fe3Ni(μ4-O)]-type clusters could be assembled, accessing an open heterobimetallic edge site proved challenging, thus prohibiting efforts to study chemical transformations, such as hydroxide attack onto carbon monoxide or carbon dioxide coordination, relevant to the native enzyme. Appendix B discusses the attempts to synthesize models of the full H-cluster of [FeFe]-hydrogenase using a bioinorganic approach. A synthetic peptide containing three cysteine donors was successfully synthesized and found to chelate a preformed synthetic [Fe4S4] cluster. However, efforts to incorporate the diiron subsite model complex proved challenging as the planned thioester exchange reaction was found to non-selectively acetylate the peptide backbone, thus preventing the construction of the full six-iron cluster.