9 resultados para Små barn
em CaltechTHESIS
Resumo:
Electronic Kαl x-ray isotope shifts have been measured for Sn 116-124, Sm 148-154, W 182-184, W 184-186, and W 182-186 using a curved crystal Cauchois spectrometer. The analysis of the measurements has included the electrostatic volume effect, screening by the transition electron as well as the non-transition electrons, normal and specific mass shifts, dynamical nuclear qudrupole polarization, and a radiative correction effect of the electron magnetic moment in the nuclear charge radii are obtained. Where other experimental data are available, the agreement with the present measurements is satisfactory. Comparisons with several nuclear model predictions yield only partial agreement.
Resumo:
Using neuromorphic analog VLSI techniques for modeling large neural systems has several advantages over software techniques. By designing massively-parallel analog circuit arrays which are ubiquitous in neural systems, analog VLSI models are extremely fast, particularly when local interactions are important in the computation. While analog VLSI circuits are not as flexible as software methods, the constraints posed by this approach are often very similar to the constraints faced by biological systems. As a result, these constraints can offer many insights into the solutions found by evolution. This dissertation describes a hardware modeling effort to mimic the primate oculomotor system which requires both fast sensory processing and fast motor control. A one-dimensional hardware model of the primate eye has been built which simulates the physical dynamics of the biological system. It is driven by analog VLSI circuits mimicking brainstem and cortical circuits that control eye movements. In this framework, a visually-triggered saccadic system is demonstrated which generates averaging saccades. In addition, an auditory localization system, based on the neural circuits of the barn owl, is used to trigger saccades to acoustic targets in parallel with visual targets. Two different types of learning are also demonstrated on the saccadic system using floating-gate technology allowing the non-volatile storage of analog parameters directly on the chip. Finally, a model of visual attention is used to select and track moving targets against textured backgrounds, driving both saccadic and smooth pursuit eye movements to maintain the image of the target in the center of the field of view. This system represents one of the few efforts in this field to integrate both neuromorphic sensory processing and motor control in a closed-loop fashion.
Resumo:
Acceptor-doped ceria has been recognized as a promising intermediate temperature solid oxide fuel cell electrode/electrolyte material. For practical implementation of ceria as a fuel cell electrolyte and for designing model experiments for electrochemical activity, it is necessary to fabricate thin films of ceria. Here, metal-organic chemical vapor deposition was carried out in a homemade reactor to grow ceria films for further electrical, electrochemical, and optical characterization. Doped/undoped ceria films are grown on single crystalline oxide wafers with/without Pt line pattern or Pt solid layer. Deposition conditions were varied to see the effect on the resultant film property. Recently, proton conduction in nanograined polycrystalline pellets of ceria drew much interest. Thickness-mode (through-plane, z-direction) electrical measurements were made to confirm the existence of proton conductivity and investigate the nature of the conduction pathway: exposed grain surfaces and parallel grain boundaries. Columnar structure presumably favors proton conduction, and we have found measurable proton conductivity enhancement. Electrochemical property of gas-columnar ceria interface on the hydrogen electrooxidation is studied by AC impedance spectroscopy. Isothermal gas composition dependence of the electrode resistance was studied to elucidate Sm doping level effect and microstructure effect. Significantly, preferred orientation is shown to affect the gas dependence and performance of the fuel cell anode. A hypothesis is proposed to explain the origin of this behavior. Lastly, an optical transmittance based methodology was developed to obtain reference refractive index and microstructural parameters (thickness, roughness, porosity) of ceria films via subsequent fitting procedure.
Resumo:
A search for dielectron decays of heavy neutral resonances has been performed using proton-proton collision data collected at √s = 7 TeV by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in 2011. The data sample corresponds to an integrated luminosity of 5 fb−1. The dielectron mass distribution is consistent with Standard Model (SM) predictions. An upper limit on the ratio of the cross section times branching fraction of new bosons, normalized to the cross section times branching fraction of the Z boson, is set at the 95 % confidence level. This result is translated into limits on the mass of new neutral particles at the level of 2120 GeV for the Z′ in the Sequential Standard Model, 1810 GeV for the superstring-inspired Z′ψ resonance, and 1940 (1640) GeV for Kaluza-Klein gravitons with the coupling parameter k/MPl of 0.10 (0.05).
Resumo:
The diterpenoid constituents of the Isodon plants have attracted reasearchers interested in both their chemical structures and biological properties for more than a half-century. In recent years, the isolations of new members displaying previously unprecedented ring systems and highly selective biological properties have piqued interest from the synthetic community in this class of natural products.
Reported herein is the first total synthesis of such a recently isolated diterpenoid, (–)-maoecrystal Z. The principal transformations implemented in this synthesis include two highly diastereoselective radical cyclization reactions: a Sm(II)-mediated reductive cascade cyclization, which forms two rings and establishes four new stereocenters in a single step, and a Ti(III)-mediated reductive epoxide-acrylate coupling that yields a functionalized spirolactone product, which forms a core bicycle of maoecrystal Z.
The preparation of two additional ent-kauranoid natural products, (–)-trichorabdal A and (–)-longikaurin E, is also described from a derivative of this key spirolactone. These syntheses are additionally enabled by the palladium-mediated oxidative cyclization reaction of a silyl ketene acetal precursor that is used to install the bridgehead all-carbon quaternary stereocenter and bicyclo[3.2.1]octane present in each natural product. These studies have established a synthetic relationship among three architecturally distinct ent-kaurane diterpenoids and have forged a path for the preparation of interesting unnatural ent-kauranoid structural analogs for more thorough biological study.
Resumo:
The objective of this thesis is to develop a framework to conduct velocity resolved - scalar modeled (VR-SM) simulations, which will enable accurate simulations at higher Reynolds and Schmidt (Sc) numbers than are currently feasible. The framework established will serve as a first step to enable future simulation studies for practical applications. To achieve this goal, in-depth analyses of the physical, numerical, and modeling aspects related to Sc>>1 are presented, specifically when modeling in the viscous-convective subrange. Transport characteristics are scrutinized by examining scalar-velocity Fourier mode interactions in Direct Numerical Simulation (DNS) datasets and suggest that scalar modes in the viscous-convective subrange do not directly affect large-scale transport for high Sc. Further observations confirm that discretization errors inherent in numerical schemes can be sufficiently large to wipe out any meaningful contribution from subfilter models. This provides strong incentive to develop more effective numerical schemes to support high Sc simulations. To lower numerical dissipation while maintaining physically and mathematically appropriate scalar bounds during the convection step, a novel method of enforcing bounds is formulated, specifically for use with cubic Hermite polynomials. Boundedness of the scalar being transported is effected by applying derivative limiting techniques, and physically plausible single sub-cell extrema are allowed to exist to help minimize numerical dissipation. The proposed bounding algorithm results in significant performance gain in DNS of turbulent mixing layers and of homogeneous isotropic turbulence. Next, the combined physical/mathematical behavior of the subfilter scalar-flux vector is analyzed in homogeneous isotropic turbulence, by examining vector orientation in the strain-rate eigenframe. The results indicate no discernible dependence on the modeled scalar field, and lead to the identification of the tensor-diffusivity model as a good representation of the subfilter flux. Velocity resolved - scalar modeled simulations of homogeneous isotropic turbulence are conducted to confirm the behavior theorized in these a priori analyses, and suggest that the tensor-diffusivity model is ideal for use in the viscous-convective subrange. Simulations of a turbulent mixing layer are also discussed, with the partial objective of analyzing Schmidt number dependence of a variety of scalar statistics. Large-scale statistics are confirmed to be relatively independent of the Schmidt number for Sc>>1, which is explained by the dominance of subfilter dissipation over resolved molecular dissipation in the simulations. Overall, the VR-SM framework presented is quite effective in predicting large-scale transport characteristics of high Schmidt number scalars, however, it is determined that prediction of subfilter quantities would entail additional modeling intended specifically for this purpose. The VR-SM simulations presented in this thesis provide us with the opportunity to overlap with experimental studies, while at the same time creating an assortment of baseline datasets for future validation of LES models, thereby satisfying the objectives outlined for this work.
Resumo:
In this thesis I present a study of W pair production in e+e- annihilation using fully hadronic W+W- events. Data collected by the L3 detector at LEP in 1996-1998, at collision center-of-mass energies between 161 and 189 GeV, was used in my analysis.
Analysis of the total and differential W+W- cross sections with the resulting sample of 1,932 W+W- → qqqq event candidates allowed me to make precision measurements of a number of properties of the W boson. I combined my measurements with those using other W+W- final states to obtain stringent constraints on the W boson's couplings to fermions, other gauge bosons, and scalar Higgs field by measuring the total e+e- → W+W- cross section and its energy dependence
σ(e+e- → W+W-) =
{2.68+0.98-0.67(stat.)± 0.14(syst.) pb, √s = 161.34 GeV
{12.04+1.38-1.29(stat.)± 0.23(syst.) pb, √s = 172.13 GeV
{16.45 ± 0.67(stat.) ± 0.26(syst.) pb, √s = 182.68 GeV
{16.28 ± 0.38(stat.) ± 0.26(syst.) pb, √s = 188.64 GeV
the fraction of W bosons decaying into hadrons
BR(W →qq') = 68.72 ± 0.69(stat.) ± 0.38(syst.) %,invisible non-SM width of the W boson
ΓinvisibleW less than MeV at 95% C.L.,the mass of the W boson
MW = 80.44 ± 0.08(stat.)± 0.06(syst.) GeV,the total width of the W boson
ΓW = 2.18 ± 0.20(stat.)± 0.11(syst.) GeV,the anomalous triple gauge boson couplings of the W
ΔgZ1 = 0.16+0.13-0.20(stat.) ± 0.11(syst.)
Δkγ = 0.26+0.24-0.33(stat.) ± 0.16(syst.)
λγ = 0.18+0.13-0.20(stat.) ± 0.11(syst.)
No significant deviations from Standard Model predictions were found in any of the measurements.
Resumo:
Energies and relative intensities of gamma transitions in 152Sm, 152Gd, 154Gd, 166Er, and 232U following radioactive decay have been measured with a Ge(Li) spectrometer. A peak fitting program has been developed to determine gamma ray energies and relative intensities with precision sufficient to give a meaningful test of nuclear models. Several previously unobserved gamma rays were placed in the nuclear level schemes. Particular attention has been paid to transitions from the beta and gamma vibrational bands, since the gamma ray branching ratios are sensitive tests of configuration mixing in the nuclear levels. As the reduced branching ratios depend on the multipolarity of the gamma transitions, experiments were performed to measure multipole mixing ratios for transitions from the gamma vibrational band. In 154Gd, angular correlation experiments showed that transitions from the gamma band to the ground state band were predominantly electric quadrupole, in agreement with the rotational model. In 232U, the internal conversion spectrum has been studied with a Si(Li) spectrometer constructed for electron spectroscopy. The strength of electric monopole transitions and the multipolarity of some gamma transitions have been determined from the measured relative electron intensities.
The results of the experiments have been compared with the rotational model and several microscopic models. Relative B(E2) strengths for transitions from the gamma band in 232U and 166Er are in good agreement with a single parameter band mixing model, with values of z2= 0.025(10) and 0.046(2), respectively. Neither the beta nor the gamma band transition strengths in 152Sm and 154Gd can be accounted for by a single parameter theory, nor can agreement be found by considering the large mixing found between the beta and gamma bands. The relative B(E2) strength for transitions from the gamma band to the beta band in 232U is found to be five times greater than the strength to the ground state band, indicating collective transitions with strength approximately 15 single particle units.
Resumo:
Isotope shifts of Kα1 x-ray transitions were measured for the Neodymium isotopes Nd 142, 143, 144, 145, 146, 148 and 150, the Samarium isotopes Sm 147, 148, 149, 150, 152 and 154, the Gadolinium isotopes Gd 154, 155, 156, 157, 158 and 160, the Dysprosium isotopes Dy 162 and 164, the Erbium isotopes Er 166, 168 and 170, the Hafnium isotopes Hf 178 and 180 and the Lead isotopes Pb 204, 206, 207 and 208. A curved crystal Cauchois spectrometer was used. The analysis of the measurement furnished the variation of the mean square charge radius of the nucleus, δ˂r2˃, for 23 isotope pairs. The experimental results were compared with theoretical values from nuclear models. Combining the x-ray shifts and the optical shifts in Nd and Sm yielded the optical mass shifts. An anomaly was observed in the odd-even shifts when the optical and the x-ray shifts were plotted against each other.