3 resultados para Situational Norms

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i) randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-semidefinite (PSD) matrices.

Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix to zero. When the approximant is substituted for the original matrix in computations, its sparsity allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on the approximation error of nonuniform randomized sparsification schemes, measured in the spectral norm and two NP-hard norms that are of interest in computational graph theory and subset selection applications.

Low-rank approximations based on randomized unitary transformations have several desirable properties: they have low communication costs, are amenable to parallel implementation, and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff between the accuracy and cost of generating such approximations. State-of-the-art spectral and Frobenius-norm error bounds are provided.

The last class of algorithms considered are SPSD "sketching" algorithms. Such sketches can be computed faster than approximations based on projecting onto mixtures of the columns of the matrix. The performance of several such sketching schemes is empirically evaluated using a suite of canonical matrices drawn from machine learning and data analysis applications, and a framework is developed for establishing theoretical error bounds.

In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of certain classes of random matrices. These inequalities are used to investigate the behavior of the singular values of a matrix under random sampling, and to derive convergence rates for each individual eigenvalue of a sample covariance matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of a "projection function" in a finite-dimensional real or complex normed linear space H (the function PM which carries every element into the closest element of a given subspace M) is set forth and examined.

If dim M = dim H - 1, then PM is linear. If PN is linear for all k-dimensional subspaces N, where 1 ≤ k < dim M, then PM is linear.

The projective bound Q, defined to be the supremum of the operator norm of PM for all subspaces, is in the range 1 ≤ Q < 2, and these limits are the best possible. For norms with Q = 1, PM is always linear, and a characterization of those norms is given.

If H also has an inner product (defined independently of the norm), so that a dual norm can be defined, then when PM is linear its adjoint PMH is the projection on (kernel PM) by the dual norm. The projective bounds of a norm and its dual are equal.

The notion of a pseudo-inverse F+ of a linear transformation F is extended to non-Euclidean norms. The distance from F to the set of linear transformations G of lower rank (in the sense of the operator norm ∥F - G∥) is c/∥F+∥, where c = 1 if the range of F fills its space, and 1 ≤ c < Q otherwise. The norms on both domain and range spaces have Q = 1 if and only if (F+)+ = F for every F. This condition is also sufficient to prove that we have (F+)H = (FH)+, where the latter pseudo-inverse is taken using dual norms.

In all results, the real and complex cases are handled in a completely parallel fashion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with estimating the upper envelopes S* of the absolute values of the partial sums of rearranged trigonometric sums. A.M. Garsia [Annals of Math. 79 (1964), 634-9] gave an estimate for the L2 norms of the S*, averaged over all rearrangements of the original (finite) sum. This estimate enabled him to prove that the Fourier series of any function in L2 can be rearranged so that it converges a.e. The main result of this thesis is a similar estimate of the Lq norms of the S*, for all even integers q. This holds for finite linear combinations of functions which satisfy a condition which is a generalization of orthonormality in the L2 case. This estimate for finite sums is extended to Fourier series of Lq functions; it is shown that there are functions to which the Men’shov-Paley Theorem does not apply, but whose Fourier series can nevertheless be rearranged so that the S* of the rearranged series is in Lq.