2 resultados para Shackleton, Abraham, 1697-1771.
em CaltechTHESIS
Resumo:
In this thesis we study Galois representations corresponding to abelian varieties with certain reduction conditions. We show that these conditions force the image of the representations to be "big," so that the Mumford-Tate conjecture (:= MT) holds. We also prove that the set of abelian varieties satisfying these conditions is dense in a corresponding moduli space.
The main results of the thesis are the following two theorems.
Theorem A: Let A be an absolutely simple abelian variety, End° (A) = k : imaginary quadratic field, g = dim(A). Assume either dim(A) ≤ 4, or A has bad reduction at some prime ϕ, with the dimension of the toric part of the reduction equal to 2r, and gcd(r,g) = 1, and (r,g) ≠ (15,56) or (m -1, m(m+1)/2). Then MT holds.
Theorem B: Let M be the moduli space of abelian varieties with fixed polarization, level structure and a k-action. It is defined over a number field F. The subset of M(Q) corresponding to absolutely simple abelian varieties with a prescribed stable reduction at a large enough prime ϕ of F is dense in M(C) in the complex topology. In particular, the set of simple abelian varieties having bad reductions with fixed dimension of the toric parts is dense.
Besides this we also established the following results:
(1) MT holds for some other classes of abelian varieties with similar reduction conditions. For example, if A is an abelian variety with End° (A) = Q and the dimension of the toric part of its reduction is prime to dim( A), then MT holds.
(2) MT holds for Ribet-type abelian varieties.
(3) The Hodge and the Tate conjectures are equivalent for abelian 4-folds.
(4) MT holds for abelian 4-folds of type II, III, IV (Theorem 5.0(2)) and some 4-folds of type I.
(5) For some abelian varieties either MT or the Hodge conjecture holds.
Resumo:
This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.