8 resultados para Sensors and interfaces
em CaltechTHESIS
Resumo:
The optomechanical interaction is an extremely powerful tool with which to measure mechanical motion. The displacement resolution of chip-scale optomechanical systems has been measured on the order of 1⁄10th of a proton radius. So strong is this optomechanical interaction that it has recently been used to remove almost all thermal noise from a mechanical resonator and observe its quantum ground-state of motion starting from cryogenic temperatures.
In this work, chapter 1 describes the basic physics of the canonical optomechanical system, optical measurement techniques, and how the optomechanical interaction affects the coupled mechanical resonator. In chapter 2, we describe our techniques for realizing this canonical optomechanical system in a chip-scale form factor.
In chapter 3, we describe an experiment where we used radiation pressure feedback to cool a mesoscopic mechanical resonator near its quantum ground-state from room-temperature. We cooled the resonator from a room temperature phonon occupation of <n> = 6.5 million to an occupation of <n> = 66, which means the resonator is in its ground state approximately 2% of the time, while being coupled to a room-temperature thermal environment. At the time of this work, this is the closest a mesoscopic mechanical resonator has been to its ground-state of motion at room temperature, and this work begins to open the door to room-temperature quantum control of mechanical objects.
Chapter 4 begins with the realization that the displacement resolutions achieved by optomechanical systems can surpass those of conventional MEMS sensors by an order of magnitude or more. This provides the motivation to develop and calibrate an optomechanical accelerometer with a resolution of approximately 10 micro-g/rt-Hz over a bandwidth of approximately 30 kHz. In chapter 5, we improve upon the performance and practicality of this sensor by greatly increasing the test mass size, investigating and reducing low-frequency noise, and incorporating more robust optical coupling techniques and capacitive wavelength tuning. Finally, in chapter 6 we present our progress towards developing another optomechanical inertial sensor - a gyroscope.
Resumo:
With continuing advances in CMOS technology, feature sizes of modern Silicon chip-sets have gone down drastically over the past decade. In addition to desktops and laptop processors, a vast majority of these chips are also being deployed in mobile communication devices like smart-phones and tablets, where multiple radio-frequency integrated circuits (RFICs) must be integrated into one device to cater to a wide variety of applications such as Wi-Fi, Bluetooth, NFC, wireless charging, etc. While a small feature size enables higher integration levels leading to billions of transistors co-existing on a single chip, it also makes these Silicon ICs more susceptible to variations. A part of these variations can be attributed to the manufacturing process itself, particularly due to the stringent dimensional tolerances associated with the lithographic steps in modern processes. Additionally, RF or millimeter-wave communication chip-sets are subject to another type of variation caused by dynamic changes in the operating environment. Another bottleneck in the development of high performance RF/mm-wave Silicon ICs is the lack of accurate analog/high-frequency models in nanometer CMOS processes. This can be primarily attributed to the fact that most cutting edge processes are geared towards digital system implementation and as such there is little model-to-hardware correlation at RF frequencies.
All these issues have significantly degraded yield of high performance mm-wave and RF CMOS systems which often require multiple trial-and-error based Silicon validations, thereby incurring additional production costs. This dissertation proposes a low overhead technique which attempts to counter the detrimental effects of these variations, thereby improving both performance and yield of chips post fabrication in a systematic way. The key idea behind this approach is to dynamically sense the performance of the system, identify when a problem has occurred, and then actuate it back to its desired performance level through an intelligent on-chip optimization algorithm. We term this technique as self-healing drawing inspiration from nature's own way of healing the body against adverse environmental effects. To effectively demonstrate the efficacy of self-healing in CMOS systems, several representative examples are designed, fabricated, and measured against a variety of operating conditions.
We demonstrate a high-power mm-wave segmented power mixer array based transmitter architecture that is capable of generating high-speed and non-constant envelope modulations at higher efficiencies compared to existing conventional designs. We then incorporate several sensors and actuators into the design and demonstrate closed-loop healing against a wide variety of non-ideal operating conditions. We also demonstrate fully-integrated self-healing in the context of another mm-wave power amplifier, where measurements were performed across several chips, showing significant improvements in performance as well as reduced variability in the presence of process variations and load impedance mismatch, as well as catastrophic transistor failure. Finally, on the receiver side, a closed-loop self-healing phase synthesis scheme is demonstrated in conjunction with a wide-band voltage controlled oscillator to generate phase shifter local oscillator (LO) signals for a phased array receiver. The system is shown to heal against non-idealities in the LO signal generation and distribution, significantly reducing phase errors across a wide range of frequencies.
Resumo:
We introduce an in vitro diagnostic magnetic biosensing platform for immunoassay and nucleic acid detection. The platform has key characteristics for a point-of-use (POU) diagnostic: portability, low-power consumption, low cost, and multiplexing capability. As a demonstration of capabilities, we use this platform for the room temperature, amplification-free detection of a 31 bp DNA oligomer and interferon-gamma (a protein relevant for tuberculosis diagnosis). Reliable assay measurements down to 100 pM for the DNA and 1 pM for the protein are demonstrated. We introduce a novel "magnetic freezing" technique for baseline measurement elimination and to enable spatial multiplexing. We have created a general protocol for adapting integrated circuit (IC) sensors to any of hundreds of commercially available immunoassay kits and custom designed DNA sequences.
We also introduce a method for immunotherapy treatment of malignant gliomas. We utilize leukocytes internalized with immunostimulatory nanoparticle-oligonucleotide conjugates to localize and retain immune cells near the tumor site. As a proof-of-principle, we develop a novel cell imaging and incubation chamber for in vitro magnetic motility experiments. We use the apparatus to demonstrate the controlled movement of magnetically loaded THP-1 leukocytes.
Finally, we introduce an IC transmitter and power ampli er (PA) that utilizes electronic digital infrastructure, sensors, and actuators to self-heal and adapt to process, dynamic, and environmental variation. Traditional IC design has achieved incredible degrees of reliability by ensuring that billions of transistors on a single IC die are all simultaneously functional. Reliability becomes increasingly difficult as the size of a transistor shrinks. Self-healing can mitigate these variations.
Resumo:
Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.
Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.
Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.
Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.
Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.
Resumo:
Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement.
During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.
Resumo:
This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN --- the Community Seismic Network --- which uses relatively low-cost sensors deployed by members of the community, and (2) SAF --- the Situation Awareness Framework --- which integrates data from multiple sources, including the CSN, CISN --- the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California --- and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.
Resumo:
Smartphones and other powerful sensor-equipped consumer devices make it possible to sense the physical world at an unprecedented scale. Nearly 2 million Android and iOS devices are activated every day, each carrying numerous sensors and a high-speed internet connection. Whereas traditional sensor networks have typically deployed a fixed number of devices to sense a particular phenomena, community networks can grow as additional participants choose to install apps and join the network. In principle, this allows networks of thousands or millions of sensors to be created quickly and at low cost. However, making reliable inferences about the world using so many community sensors involves several challenges, including scalability, data quality, mobility, and user privacy.
This thesis focuses on how learning at both the sensor- and network-level can provide scalable techniques for data collection and event detection. First, this thesis considers the abstract problem of distributed algorithms for data collection, and proposes a distributed, online approach to selecting which set of sensors should be queried. In addition to providing theoretical guarantees for submodular objective functions, the approach is also compatible with local rules or heuristics for detecting and transmitting potentially valuable observations. Next, the thesis presents a decentralized algorithm for spatial event detection, and describes its use detecting strong earthquakes within the Caltech Community Seismic Network. Despite the fact that strong earthquakes are rare and complex events, and that community sensors can be very noisy, our decentralized anomaly detection approach obtains theoretical guarantees for event detection performance while simultaneously limiting the rate of false alarms.