7 resultados para SPARK

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An array of two spark chambers and six trays of plastic scintillation counters was used to search for unaccompanied fractionally charged particles in cosmic rays near sea level. No acceptable events were found with energy losses by ionization between 0.04 and 0.7 that of unit-charged minimum-ionizing particles. New 90%-confidence upper limits were thereby established for the fluxes of fractionally charged particles in cosmic rays, namely, (1.04 ± 0.07)x10-10 and (2.03 ± 0.16)x10-10 cm-2sr-1sec-1 for minimum-ionizing particles with charges 1/3 and 2/3, respectively.

In order to be certain that the spark chambers could have functioned for the low levels of ionization expected from particles with small fractional charges, tests were conducted to estimate the efficiency of the chambers as they had been used in this experiment. These tests showed that the spark-chamber system with the track-selection criteria used might have been over 99% efficient for the entire range of energy losses considered.

Lower limits were then obtained for the mass of a quark by considering the above flux limits and a particular model for the production of quarks in cosmic rays. In this model, which is one involving the multi-peripheral Regge hypothesis, the production cross section and a corresponding mass limit are critically dependent on the Regge trajectory assigned to a quark. If quarks are "elementary'' with a flat trajectory, the mass of a quark can be expected to be at least 6 ± 2 BeV/c2. If quarks have a trajectory with unit slope, just as the existing hadrons do, the mass of a quark might be as small as 1.3 ± 0.2 BeV/c2. For a trajectory with unit slope and a mass larger than a couple of BeV/c2, the production cross section may be so low that quarks might never be observed in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured the recoil proton polarization in the process γp → pη at the 1.5 GeV Caltech electron synchrotron, at photon energies from 0.8 to 1.1 GeV, and at center-of-mass production angles around 90°. A counter-spark chamber array was used to determine the kinematics of all particles in the final state of the partial mode γp → pη (η → 2γ). The protons' polarization was determined by measuring an asymmetry in scattering off carbon. Analysis of 280,000 pictures yielded 2400 useful scatters with a background which was 30% of the foreground. The polarization results show a sizeable opposite parity interference at 830 MeV, 950 MeV, and 1100 MeV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cross sections for the two antiproton-proton annihilation-in-flight modes,

ˉp + p → π+ + π-

ˉp + p → k+ + k-

were measured for fifteen laboratory antiproton beam momenta ranging from 0.72 to 2.62 GeV/c. No magnets were used to determine the charges in the final state. As a result, the angular distributions were obtained in the form [dσ/dΩ (ΘC.M.) + dσ/dΩ (π – ΘC.M.)] for 45 ≲ ΘC.M. ≲ 135°.

A hodoscope-counter system was used to discriminate against events with final states having more than two particles and antiproton-proton elastic scattering events. One spark chamber was used to record the track of each of the two charged final particles. A total of about 40,000 pictures were taken. The events were analyzed by measuring the laboratory angle of the track in each chamber. The value of the square of the mass of the final particles was calculated for each event assuming the reaction

ˉp + p → a pair of particles with equal masses.

About 20,000 events were found to be either annihilation into π ±-pair or k ±-pair events. The two different charged meson pair modes were also distinctly separated.

The average differential cross section of ˉp + p → π+ + π- varied from ~ 25 µb/sr at antiproton beam momentum 0.72 GeV/c (total energy in center-of-mass system, √s = 2.0 GeV) to ~ 2 µb/sr at beam momentum 2.62 GeV/c (√s = 2.64 GeV). The most striking feature in the angular distribution was a peak at ΘC.M. = 90° (cos ΘC.M. = 0) which increased with √s and reached a maximum at √s ~ 2.1 GeV (beam momentum ~ 1.1 GeV/c). Then it diminished and seemed to disappear completely at √s ~ 2.5 GeV (beam momentum ~ 2.13 GeV/c). A valley in the angular distribution occurred at cos ΘC.M. ≈ 0.4. The differential cross section then increased as cos ΘC.M. approached 1.

The average differential cross section for ˉp + p → k+ + k- was about one third of that of the π±-pair mode throughout the energy range of this experiment. At the lower energies, the angular distribution, unlike that of the π±-pair mode, was quite isotropic. However, a peak at ΘC.M. = 90° seemed to develop at √s ~ 2.37 GeV (antiproton beam momentum ~ 1.82 GeV/c). No observable change was seen at that energy in the π±-pair cross section.

The possible connection of these features with the observed meson resonances at 2.2 GeV and 2.38 GeV, and its implications, were discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction γ + p p + π+ + π- has been studied for photon energies between 800 and 1500 MeV and for dipion masses between 510 and 900 MeV. The bremsstrahlung beam from the Caltech synchrotron was passed through a liquid hydrogen target and spark chambers were used to detect the three final particles. In addition, the proton energy was determined by a range measurement. Approximately 40,000 photographs were taken, yielding 3018 acceptable events. The results were fit to an incoherent combination of the N*(1238) resonance, the po (750) resonance, and three-body phase space, with various models being tried for po production. The total cross section for po production is consistent with previous experiments. However, the angular dependence of the cross section is slightly more peaked in the forward direction, and the ratio of po production to phase space production is larger than previously observed.

However, since this experiment was only sensitive to the production angles cos θ cm ≥ .75, statistical fluctuations and/or an anisotropic distribution of background production have a severe influence on the po to background ratio. Of the po models tested, the results prefer po production by the one pion exchange mechanism with a very steep form factor dependence. The values of the mass and width of the po found here are consistent with previous experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured the differential cross section of the process γp → pƞ at the 1.5 GeV Caltech electron synchrotron, at photon energies from 0.8 to 1.45 GeV, at various angles between 45° and 100° in the center of mass. A counter-spark chamber array was used to determine the kinematics of all particles in the final state of the partial mode γp → pƞ (ƞ → 2γ). Analysis of 40,000 pictures yielded 6,000 events above a background which varied with energy from 5% to 30% of foreground. The cross section shows an energy dependence confirming earlier results up to 1000 MeV, but with improved statistics; it then remains roughly constant (at 50° C.M.), to 1.45 GeV. The data show a small angular variation, within the limited range covered, at energies between 1000 and 1100 MeV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time distribution of the decays of an initially pure K° beam into π+π-π° has been analyzed to determine the complex parameter W (also known as Ƞ+-° and (x + iy)). The K° beam was produced in a brass target by the interactions of a 2.85 GeV/c π- beam which was generated on an internal target in the Lawrence Radiation Laboratory (LRL) Bevatron. The counters and hodoscopes in the apparatus selected for events with a neutral (K°) produced in the brass target, two charged secondaries passing through a magnet spectrometer and a ɣ-ray shower in a shower hodoscope.

From the 275K apparatus triggers, 148 K → π+π-π° events were isolated. The presence of a ɣ-ray shower in the optical shower chambers and a two-prong vee in the optical spark chambers were devices used to isolate the events. The backgrounds were further reduced by reconstructing the momenta of the two charged secondaries and applying kinematic constraints.

The best fit to the final sample of 148 events distributed between .3 and 7.0 KS lifetimes gives:

ReW = -.05 ±.17

ImW = +.39 +.35/-.37

This result is consistent with both CPT invariance (ReW = 0) and CP invariance (W = 0). Backgrounds are estimated to be less than 10% and systematic effects have also been estimated to be negligible.

An analysis of the present data on CP violation in this decay mode and other K° decay modes has estimated the phase of ɛ to be 45.3 ± 2.3 degrees. This result is consistent with the super weak theories of CP violation which predicts the phase of ɛ to be 43°. This estimate is in turn used to predict the phase of Ƞ°° to be 48.0 ± 7.9 degrees. This is a substantial improvement on presently available measurements. The largest error in this analysis comes from the present limits on W from the world average of recent experiments. The K → πuʋ mode produces the next largest error. Therefore further experimentation in these modes would be useful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured differential cross-sections for the two-body photodisintegration of Helium-3, ɣ + He3 → p + d, between incident photon energies of 200 and 600 MeV, and for center of mass frame angles between 30° and 150°. Both final state particles were detected in arrays of wire spark chambers and scintillation counters; the high momentum particle was analyzed in a magnet spectrometer. The results are interpreted in terms of amplitudes to produce the ∆(1236) resonance in an intermediate state, as well as non-resonant amplitudes. This experiment, together with an (unfinished) experiment on the inverse reaction, p + d → He3 + ɣ, will provide a reciprocity test of time reversal invariance.