2 resultados para SODIUM-PUMP ACTIVITY
em CaltechTHESIS
Resumo:
I. Alkaline phosphatase activity in the developing sea urchin Lytechinus pictus has been investigated with respect to intensity at various stages, ionic requirements and intracellular localization. The activity per embryo remains the same in the unfertilized egg, fertilized egg and cleavage stages. At a time just prior to gastrulation (about 10 hours after fertilization) the activity per embryo begins to rise and increases after 300 times over the activity in the cleavage stages during the next 60 hours.
The optimum ionic strength for enzymatic activity shows a wide peak at 0.6 to 1.0. Calcium and magnesium show an additional optimum at a concentration in the range of 0.02 to 0.07 molar. EDTA at concentrations of 0.0001 molar and higher shows a definite inhibition of activity.
The intracellular localization of alkaline phosphatase in homogenates of 72-hour embryos has been studied employing the differential centrifugation method. The major portion of the total activity in these homogenates was found in mitochondrial and microsomal fractions with less than 5% in the nuclear fraction and less than 2% in the final supernatant. The activity could be released from all fractions by treatment with sodium deoxycholate.
II. The activation of protein biosynthesis at fertilization in eggs of the sea urchins Lytechinus pictus and Strongylocentrotus purpuratus has been studied in both intact eggs and cell-free homogenates. It is shown that homogenates from both unfertilized and fertilized eggs are dependent on potassium and magnesium ions for optimum amino acid incorporation activity and in the case of the latter the concentration range is quite narrow. Though the optimum magnesium concentrations appear to differ slightly in homogenates of unfertilized and fertilized eggs, in no case was it observed that unfertilized egg homogenates were stimulated to incorporate at a level comparable to that of the fertilized eggs.
An activation of amino acid incorporation into protein has also been shown to occur in parthenogenetically activated non-nucleate sea urchin egg fragments or homogenates thereof. This activation resembles that in the fertilized whole egg or fragment both in amount and pattern of activation. Furthermore, it is shown that polyribosomes form in these non-nucleate fragments upon artificial activation. These findings are discussed along with possible mechanisms for activation of the system at fertilization.
Resumo:
Spreading depression (SD) is a phenomenon observed in several sections of vertebrate central nervous system. It can occur spontaneously or be evoked by a variety of stimuli, and consists of a wave of depression of the normal electrical activity of the nervous tissue which spreads slowly in all directions in the tissue. This wave of depression is accompanied by several concomitants including ion movements. All the concomitants of SD can be explained by an increase in the sodium permeability of the plasma membranes of cellular elements involved in this phenomenon.
In the chicken retina, SD is accompanied by a transparency change which can be detected with the naked eye. The isolated retina is a thin (0.1 mm) membrane in which the extracellular fluid quickly and completely equilibrates with the incubation solutions. This preparation was therefore used to study the ion movements during SD by measuring and comparing the ion contents and the extracellular space (ECS) of retinas incubated in various solutions of which some inhibited SD, whereas others allowed this phenomenon to occur.
The present study has shown that during SD there is a shift of extracellular sodium into the intracellular compartment of the retina, a release of intracellular K and a decrease in the magnitude of ECS. These results are in agreement with previous postulates about SD, although the in vitro experimental condition makes the ion movements appear larger and the loss of ECS smaller than observed in the intact cortical tissue. The movements of Na and K, in opposite directions, are reversible. The development and magnitudes of SD is very little affected by deprivation of the oxygen supply.
It was established that the inward sodium shift is not a consequence of an arrest of the Na-pump. It can be prevented, together with SD by the membrane stabilizers, magnesium and procaine. Spreading depression and the ion movements are incompletely inhibited by tetrodotoxin, which blocks the sodium influx into nerve fibers during the action potential. The replacement of Na in the bathing solution by Li does not prevent SD, which is accompanied by Li accumulation in the intracellular compartment. From these experiments and others it was concluded that the mechanism underlying SD and the ion shifts is an increase in the sodium permeability of cell membranes.