6 resultados para SIMPLEX-VIRUS
em CaltechTHESIS
Resumo:
Distinct structures delineating the introns of Simian Virus 40 T-antigen and Adenovirus 2 E1A genes have been discovered. The structures, which are centered around the branch points of the genes inserted in supercoiled double-stranded plasmids, are specifically targeted through photoactivated strand cleavage by the metal complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). The DNA sites that are recognized lack sequence homology but are similar in demarcating functionally important sites on the RNA level. The single-stranded DNA fragments corresponding to the coding strands of the genes were also found to fold into a structure apparently identical to that in the supercoiled genes based on the recognition by the metal complex. Further investigation of different single-stranded DNA fragments with other structural probes, such as another metal complex bis(1,10-phenanthroline)(phenanthrenequinone diimine)rhodium(III), AMT (4'aminomethyl-4,5',8 trimethylpsoralen), restriction enzyme Mse I, and mung bean nuclease, showed that the structures require the sequ ences at both ends of the intron plus the flanking sequences but not the middle of the intron. The two ends form independent helices which interact with each other to form the global tertiary structures. Both of the intron structures share similarities to the structure of the Holliday junction, which is also known to be specifically targeted by the former metal complex. These structures may have arisen from early RNA intron structures and may have been used to facilitate the evolution of genes through exon shuffling by acting as target sites for recombinase enzymes.
Resumo:
Viruses possess very specific methods of targeting and entering cells. These methods would be extremely useful if they could also be applied to drug delivery, but little is known about the molecular mechanisms of the viral entry process. In order to gain further insight into mechanisms of viral entry, chemical and spectroscopic studies in two systems were conducted, examining hydrophobic protein-lipid interactions during Sendai virus membrane fusion, and the kinetics of bacteriophage λ DNA injection.
Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator3-(trifluoromethyl)-3-(m-^(125 )I] iodophenyl)diazirine (TID). The probe was incorporated in target membranes prior to virus addition and photolysis. During Sendai virus fusion with liposomes composed of cardiolipin (CL) or phosphatidylserine (PS), the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F_1 subunit with the target membrane is an initiating event in fusion. Correlation of the hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. Separation of proteins after labeling shows that the F_1 subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and that the F_2 subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions, after titration of acidic amino acids. HN labeling under nonfusogenic conditions reveals that viral binding may involve hydrophobic as well as electrostatic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions.
Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes, and that HN binding may involve hydrophobic interactions as well. Labeling of the erythrocyte membranes revealed close membrane association of spectrin, which may play a role in regulating membrane fusion. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion. Correlation of these results with earlier studies of membrane hydration and fusion kinetics provides a more detailed view of the mechanism of fusion.
The kinetics of DNA injection by bacteriophage λ. into liposomes bearing reconstituted receptors were measured using fluorescence spectroscopy. LamB, the bacteriophage receptor, was extracted from bacteria and reconstituted into liposomes by detergent removal dialysis. The DNA binding fluorophore ethidium bromide was encapsulated in the liposomes during dialysis. Enhanced fluorescence of ethidium bromide upon binding to injected DNA was monitored, and showed that injection is a rapid, one-step process. The bimolecular rate law, determined by the method of initial rates, revealed that injection occurs several times faster than indicated by earlier studies employing indirect assays.
It is hoped that these studies will increase the understanding of the mechanisms of virus entry into cells, and to facilitate the development of virus-mimetic drug delivery strategies.
Resumo:
The genomes of many positive stranded RNA viruses and of all retroviruses are translated as large polyproteins which are proteolytically processed by cellular and viral proteases. Viral proteases are structurally related to two families of cellular proteases, the pepsin-like and trypsin-like proteases. This thesis describes the proteolytic processing of several nonstructural proteins of dengue 2 virus, a representative member of the Flaviviridae, and describes methods for transcribing full-length genomic RNA of dengue 2 virus. Chapter 1 describes the in vitro processing of the nonstructural proteins NS2A, NS2B and NS3. Chapter 2 describes a system that allows identification of residues within the protease that are directly or indirectly involved with substrate recognition. Chapter 3 describes methods to produce genome length dengue 2 RNA from cDNA templates.
The nonstructural protein NS3 is structurally related to viral trypsinlike proteases from the alpha-, picorna-, poty-, and pestiviruses. The hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins was tested using an efficient in vitro expression system and antisera specific for the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed using T7 RNA polymerase and the RNA translated in reticulocyte lysates. Proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain necessary and sufficient for correct cleavage to the first 184 amino acids of NS3. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.
Biochemical and genetic experiments using viral proteinases have defined the sequence requirements for cleavage site recognition, but have not identified residues within proteinases that interact with substrates. A biochemical assay was developed that could identify residues which were important for substrate recognition. Chimeric proteases between yellow fever and dengue 2 were constructed that allowed mapping of regions involved in substrate recognition, and site directed mutagenesis was used to modulate processing efficiency.
Expression in vitro revealed that the dengue protease domain efficiently processes the yellow fever polyprotein between NS2A and NS2B and between NS2B and NS3, but that the reciprocal construct is inactive. The dengue protease processes yellow fever cleavage sites more efficiently than dengue cleavage sites, suggesting that suboptimal cleavage efficiency may be used to increase levels of processing intermediates in vivo. By mutagenizing the putative substrate binding pocket it was possible to change the substrate specificity of the yellow fever protease; changing a minimum of three amino acids in the yellow fever protease enabled it to recognize dengue cleavage sites. This system allows identification of residues which are directly or indirectly involved with enzyme-substrate interaction, does not require a crystal structure, and can define the substrate preferences of individual members of a viral proteinase family.
Full-length cDNA clones, from which infectious RNA can be transcribed, have been developed for a number of positive strand RNA viruses, including the flavivirus type virus, yellow fever. The technology necessary to transcribe genomic RNA of dengue 2 virus was developed in order to better understand the molecular biology of the dengue subgroup. A 5' structural region clone was engineered to transcribe authentic dengue RNA that contains an additional 1 or 2 residues at the 5' end. A 3' nonstructural region clone was engineered to allow production of run off transcripts, and to allow directional ligation with the 5' structural region clone. In vitro ligation and transcription produces full-length genomic RNA which is noninfectious when transfected into mammalian tissue culture cells. Alternative methods for constructing cDNA clones and recovering live dengue virus are discussed.
Resumo:
Recently, the amino acid sequences have been reported for several proteins, including the envelope glycoproteins of Sindbis virus, which all probably span the plasma membrane with a common topology: a large N-terminal, extracellular portion, a short region buried in the bilayer, and a short C-terminal intracellular segment. The regions of these proteins buried in the bilayer correspond to portions of the protein sequences which contain a stretch of hydrophobic amino acids and which have other common characteristics, as discussed. Reasons are also described for uncertainty, in some proteins more than others, as to the precise location of some parts of the sequence relative to the membrane.
The signal hypothesis for the transmembrane translocation of proteins is briefly described and its general applicability is reviewed. There are many proteins whose translocation is accurately described by this hypothesis, but some proteins are translocated in a different manner.
The transmembraneous glycoproteins E1 and E2 of Sindbis virus, as well as the only other virion protein, the capsid protein, were purified in amounts sufficient for biochemical analysis using sensitive techniques. The amino acid composition of each protein was determined, and extensive N-terminal sequences were obtained for E1 and E2. By these techniques E1 and E2 are indistinguishable from most water soluble proteins, as they do not contain an obvious excess of hydrophobic amino acids in their N-terminal regions or in the intact molecule.
The capsid protein was found to be blocked, and so its N-terminus could not be sequenced by the usual methods. However, with the use of a special labeling technique, it was possible to incorporate tritiated acetate into the N-terminus of the protein with good specificity, which was useful in the purification of peptides from which the first amino acids in the N-terminal sequence could be identified.
Nanomole amounts of PE2, the intracellular precursor of E2, were purified by an immuno-affinity technique, and its N-terminus was analyzed. Together with other work, these results showed that PE2 is not synthesized with an N-terminal extension, and the signal sequence for translocation is probably the N-terminal amino acid sequence of the protein. This N-terminus was found to be 80-90% blocked, also by Nacetylation, and this acetylation did not affect its function as a signal sequence. The putative signal sequence was also found to contain a glycosylated asparagine residue, but the inhibition of this glycosylation did not lead to the cleavage of the sequence.
Resumo:
The cytolytic interaction of Polyoma virus with mouse embryo cells has been studied by radiobiological methods known to distinguish temperate from virulent bacteriophage. No evidence for "temperate" properties of Polyoma was found. During the course of these studies, it was observed that the curve of inactivation of Polyoma virus by ultraviolet light had two components - a more sensitive one at low doses, and a less sensitive one at higher doses. Virus which survives a low dose has an eclipse period similar to that of unirradiated virus, while virus surviving higher doses shows a significantly longer eclipse period. If Puromycin is present during the early part of the eclipse period, the survival curve becomes a single exponential with the sensitivity of the less sensitive component. These results suggest a repair mechanism in mouse cells which operates more effectively if virus development is delayed.
A comparison of the rates of inactivation of the cytolytic and transforming abilities of Polyoma by ultraviolet light, X-rays, nitrous acid treatment, or the decay of incorporated P32, showed that the transforming ability has a target size roughly 60% of that of the plaque-forming ability. It is thus concluded that only a fraction of the viral genes are necessary for causing transformation.
The appearance of virus-specific RNA in productively infected mouse kidney cells has been followed by means of hybridization between pulse-labelled RNA from the infected cells and the purified virus DNA. The results show a sharp increase in the amount of virus-specific RNA around the time of virus DNA synthesis. The presence of a small amount of virus-specific RNA in virus-free transformed cells has also been shown. This result offers strong evidence for the persistence of at least part of the viral genome in transformed cells.
Resumo:
Polyoma virus can undergo two different types of interactions with susceptible cells; one type of interaction leads to the production of new infectious virus and eventual cell death while the other leads to a neoplastically transformed cell which is able to continue to divide under conditions that inhibit the multiplication of uninfected normal cells. In order to study the viral genes involved in both of these virus-cell interactions the isolation of temperature sensitive mutants of polyoma virus was undertaken.
Two strains (TS-a, TS-b) which were temperature sensitive in their plaque forming ability at 38.5˚C, but not at 31.5˚C, were isolated from a mutagenized stock of the polyoma wild type virus (PY). TS-a was studied in further detail.
TS-a grown at 31.5˚C was found to be indistinguishable from PY in a number of physical characteristics including the heat sensitivity of the completed viral components. TS-a was inhibited in its ability to produce infectious virus in mouse cells when incubated at 38.5˚C; this inhibition could be overcome by infection with high multiplicities.
The nature of the intracellular temperature sensitive step of TS-a was analysed to some degree. It was found that this step occurs after uncoating of the infecting virus particles and about the time of new viral DNA synthesis. New infectious viral DNA does not appear to be made at the nonpermissive temperature; in contrast noninfectious capsids are made at 38.5˚C, but in amounts smaller than a full yield, such as made by TS-a at 31.5˚C or by PY at both the high and low temperature.
TS-a has also been found to be temperature sensitive in its transforming ability in vitro. Cells transformed at 31.5˚C by TS-a retain their transformed characteristics upon cultivation at 38.5˚C. Thus the temperature sensitive function seems to be important for the initiation of transformation, but not essential for the maintenance of the transformed state. TS-a also appears to be temperature sensitive in the production of tumors in newborn hamsters.