17 resultados para SELECTIVE OXIDATION
em CaltechTHESIS
Resumo:
The particulate methane monooxygenase (pMMO) catalyzes the oxidation of methane to methanol under ambient temperatures and pressures. Other small alkanes and alkenes are also substrates of this enzyme. We measured and compared the initial rate constants of oxidation of small alkanes (C1 to C5) catalyzed by pMMO. Both primary and secondary alcohols were formed from oxidation of n-butane and n-pentane. The alcohols produced from alkane oxidation can be further oxidized, probably by pMMO, to aldehydes and ketones. The apparent regioselectivity for n-butane and n-pentane is 100% 2-alcohols because the formation of primary alcohols is slower than further oxidation of these alcohols. The hydroxylation at the secondary carbons is highly stereoselective: (R)-alcohols are preferentially formed. The enantiomeric excess increases slightly with decreasing reaction temperature. The steric course of hydroxylation on primary carbons was also studied by using isotopically substituted ethane: (S)- or (R)-CH_3-CHDT, and (S)- or (R)-CD_3- CHDT and the reactions were found to proceed with 100% retention of configuration. A primary isotopic effect of k_H/k_D=5.0 was observed in these experiments.
Resumo:
DNA charge transport (CT) involves the efficient transfer of electrons or electron holes through the DNA π-stack over long molecular distances of at least 100 base-pairs. Despite this shallow distance dependence, DNA CT is sensitive to mismatches or lesions that disrupt π-stacking and is critically dependent on proper electronic coupling of the donor and acceptor moieties into the base stack. Favorable DNA CT is very rapid, occurring on the picosecond timescale. Because of this speed, electron holes equilibrate along the DNA π-stack, forming a characteristic pattern of DNA damage at low oxidation potential guanine multiplets. Furthermore, DNA CT may be used in a biological context. DNA processing enzymes with 4Fe4S clusters can perform DNA-mediated electron transfer (ET) self-exchange reactions with other 4Fe4S cluster proteins, even if the proteins are quite dissimilar, as long as the DNA-bound [4Fe4S]3+/2+ redox potentials are conserved. This mechanism would allow low copy number DNA repair proteins to find their lesions efficiently within the cell. DNA CT may also be used biologically for the long-range, selective activation of redox-active transcription factors. Within this work, we pursue other proteins that may utilize DNA CT within the cell and further elucidate aspects of the DNA-mediated ET self-exchange reaction of 4Fe4S cluster proteins.
Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. One aspect of their protection involves ferroxidase activity, whereby ferrous iron is bound and oxidized selectively by hydrogen peroxide, thereby preventing formation of damaging hydroxyl radicals via Fenton chemistry. Understanding the specific mechanism by which Dps proteins protect the bacterial genome could inform the development of new antibiotics. We investigate whether DNA-binding E. coli Dps can utilize DNA CT to protect the genome from a distance. An intercalating ruthenium photooxidant was employed to generate oxidative DNA damage via the flash-quench technique, which localizes to a low potential guanine triplet. We find that Dps loaded with ferrous iron, in contrast to Apo-Dps and ferric iron-loaded Dps which lack available reducing equivalents, significantly attenuates the yield of oxidative DNA damage at the guanine triplet. These data demonstrate that ferrous iron-loaded Dps is selectively oxidized to fill guanine radical holes, thereby restoring the integrity of the DNA. Luminescence studies indicate no direct interaction between the ruthenium photooxidant and Dps, supporting the DNA-mediated oxidation of ferrous iron-loaded Dps. Thus DNA CT may be a mechanism by which Dps efficiently protects the genome of pathogenic bacteria from a distance.
Further work focused on spectroscopic characterization of the DNA-mediated oxidation of ferrous iron-loaded Dps. X-band EPR was used to monitor the oxidation of DNA-bound Dps after DNA photooxidation via the flash-quench technique. Upon irradiation with poly(dGdC)2, a signal arises with g = 4.3, consistent with the formation of mononuclear high-spin Fe(III) sites of low symmetry, the expected oxidation product of Dps with one iron bound at each ferroxidase site. When poly(dGdC)2 is substituted with poly(dAdT)2, the yield of Dps oxidation is decreased significantly, indicating that guanine radicals facilitate Dps oxidation. The more favorable oxidation of Dps by guanine radicals supports the feasibility of a long-distance protection mechanism via DNA CT where Dps is oxidized to fill guanine radical holes in the bacterial genome produced by reactive oxygen species.
We have also explored possible electron transfer intermediates in the DNA-mediated oxidation of ferrous iron-loaded Dps. Dps proteins contain a conserved tryptophan residue in close proximity to the ferroxidase site (W52 in E. coli Dps). In comparison to WT Dps, in EPR studies of the oxidation of ferrous iron-loaded Dps following DNA photooxidation, W52Y and W52A mutants were deficient in forming the characteristic EPR signal at g = 4.3, with a larger deficiency for W52A compared to W52Y. In addition to EPR, we also probed the role of W52 Dps in cells using a hydrogen peroxide survival assay. Bacteria containing W52Y Dps survived the hydrogen peroxide challenge more similarly to those containing WT Dps, whereas cells with W52A Dps died off as quickly as cells without Dps. Overall, these results suggest the possibility of W52 as a CT hopping intermediate.
DNA-modified electrodes have become an essential tool for the study of the redox chemistry of DNA processing enzymes with 4Fe4S clusters. In many cases, it is necessary to investigate different complex samples and substrates in parallel in order to elucidate this chemistry. Therefore, we optimized and characterized a multiplexed electrochemical platform with the 4Fe4S cluster base excision repair glycosylase Endonuclease III (EndoIII). Closely packed DNA films, where the protein has limited surface accessibility, produce EndoIII electrochemical signals sensitive to an intervening mismatch, indicating a DNA-mediated process. Multiplexed analysis allowed more robust characterization of the CT-deficient Y82A EndoIII mutant, as well as comparison of a new family of mutations altering the electrostatics surrounding the 4Fe4S cluster in an effort to shift the reduction potential of the cluster. While little change in the DNA-bound midpoint potential was found for this family of mutants, likely indicating the dominant effect of DNA-binding on establishing the protein redox potential, significant variations in the efficiency of DNA-mediated electron transfer were apparent. On the basis of the stability of these proteins, examined by circular dichroism, we proposed that the electron transfer pathway in EndoIII can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster.
While the 4Fe4S cluster of EndoIII is relatively insensitive to oxidation and reduction in solution, we have found that upon DNA binding, the reduction potential of the [4Fe4S]3+/2+ couple shifts negatively by approximately 200 mV, bringing this couple into a physiologically relevant range. Demonstrated using electrochemistry experiments in the presence and absence of DNA, these studies do not provide direct molecular evidence for the species being observed. Sulfur K-edge X-ray absorbance spectroscopy (XAS) can be used to probe directly the covalency of iron-sulfur clusters, which is correlated to their reduction potential. We have shown that the Fe-S covalency of the 4Fe4S cluster of EndoIII increases upon DNA binding, stabilizing the oxidized [4Fe4S]3+ cluster, consistent with a negative shift in reduction potential. The 7% increase in Fe-S covalency corresponds to an approximately 150 mV shift, remarkably similar to DNA electrochemistry results. Therefore we have obtained direct molecular evidence for the shift in 4Fe4S reduction potential of EndoIII upon DNA binding, supporting the feasibility of our model whereby these proteins can utilize DNA CT to cooperate in order to efficiently find DNA lesions inside cells.
In conclusion, in this work we have explored the biological applications of DNA CT. We discovered that the DNA-binding bacterial ferritin Dps can protect the bacterial genome from a distance via DNA CT, perhaps contributing to pathogen survival and virulence. Furthermore, we optimized a multiplexed electrochemical platform for the study of the redox chemistry of DNA-bound 4Fe4S cluster proteins. Finally, we have used sulfur K-edge XAS to obtain direct molecular evidence for the negative shift in 4Fe4S cluster reduction potential of EndoIII upon DNA binding. These studies contribute to the understanding of DNA-mediated protein oxidation within cells.
Resumo:
The anionic tripod ligand NaLoMe (L_(oMe) - = [(η^5-C_5H_5)Co{P(O)(OCH_3)_2}_3]^-) reacts with RuO_4 in a biphasic reaction mixture of 1% H_2SO_4 and CCI_4 to afford [(L_(oMe) (HO)Ru^(IV) (µ-O)_2Ru ^(IV)(OH)(L_(oMe)] (1), which is treated with aqueous CF_3S0_3H to generate [(L_(oMe)(H_2O)Ru^(IV) (µ-O)_2R^(IV) (OH_2)(L_(oMe)][CF_3SO_3]_2 ([H_21][CF_3SO_3]_2). Addition of iodosobenzene to an acetonitrile solution of this salt yields [(L_(oMe)(O)Ru^v(µ-0)2Ru^v-(O)(_(LoMe)] (2). The dimer 1 can be reduced chemically or electrochemically to the Ru^(III)- Ru^(III) dimers [(L_(oMe)(H_20)Ru^(III) (µ-OH)_2Ru^(III) (OH_2)(L_(oMe)) ]^2+ and [(L_(oMe)) ^(III) (µ-0Hh(µ-0H2)Ru^(III) (L_(oMe)]^2+ which interconvert in aqueous media. Two electron processes dominate both the bulk chemistry and the electrochemistry of 1. Among these processes are the quasi-reversible Ru^(IV) - Ru^(IV)/Ru^(III)- Ru^(III) and Ru^(III)- Ru^(III)/ Ru^(II)- Ru^(II) reductions and a largely irreversible Ru^(V) - Ru^(V)/ Ru^(IV) - Ru^(IV)/oxidation. The dioxo dimer 2 oxidizes alcohols and aldehydes in organic media to afford 1 and the corresponding aldehydes and acids. Analogously, the Ru^(V) - Ru^(V)/ Ru^(IV)- Ru^(IV) redox wave mediates the electrooxidation of alcohols and aldehydes in aqueous buffer. In this system, substrates can be oxidized completely to CO_2. The kinetic behavior of these oxidations was examined by UV-vis and chronoamperometry, respectively, and the chemistry is typical of metal-oxo complexes, indicating that electronic coupling between two metal centers does not dramatically affect the metal-oxo chemistry. Dimer [H_21]^(2+) also reacts with alcohols, aldehydes, and triphenylphosphine in CH_3CN to afford Ru^(III)- Ru^(III) products including [(L_(oMe))CH_3CN) Ru^(III) (µ-OH)_2 Ru^(III) (NCCH_3)( L_(oMe))][CF_3SO_3]2 (characterized by X-ray crystallography) and the corresponding organic products. Reaction of 1 with formaldehyde in aqueous buffer quantitatively affords the triply bridged dimer [(L_(oMe)Ru^(III) (µ-OH)2- (µ-HCOO) Ru^(III) (L_(oMe)][CF_3SO_3] (characterized by X-ray crystallography). This reaction evidently proceeds by two parallel inner-sphere pathways, one of which is autocatalytic. Neither pathway exhibits a primary isotope effect suggesting the rate determining process could be the formation of an intermediate, perhaps a Ru^(IV) - Ru^(IV) formate adduct. The Ru^(III)- Ru^(III)formate adduct is easily oxidized to the Ru^(IV) - Ru^(IV) analog [(L_(oMe)Ru^(IV)(µ-OH)_2-(µ-HCOO) Ru^(IV) (L_(oMe)][CF_3SO_3], which, after isolation, reacts slowly with aqueous formaldehyde to generate free formate and the Ru^(III)- Ru^(III) formate adduct. These dimers function as catalysts for the electrooxidation of formaldehyde at low anodic potentials (+0.0 V versus SCE in aqueous buffer, pH 8.5) and enhance the activity of Nafion treated palladium/carbon heterogeneous fuel cell catalysts.
Resumo:
In this thesis, dry chemical modification methods involving UV/ozone, oxygen plasma, and vacuum annealing treatments are explored to precisely control the wettability of CNT arrays. By varying the exposure time of these treatments the surface concentration of oxygenated groups adsorbed on the CNT arrays can be controlled. CNT arrays with very low amount of oxygenated groups exhibit a superhydrophobic behavior. In addition to their extremely high static contact angle, they cannot be dispersed in DI water and their impedance in aqueous electrolytes is extremely high. These arrays have an extreme water repellency capability such that a water droplet will bounce off of their surface upon impact and a thin film of air is formed on their surface as they are immersed in a deep pool of water. In contrast, CNT arrays with very high surface concentration of oxygenated functional groups exhibit an extreme hydrophilic behavior. In addition to their extremely low static contact angle, they can be dispersed easily in DI water and their impedance in aqueous electrolytes is tremendously low. Since the bulk structure of the CNT arrays are preserved during the UV/ozone, oxygen plasma, and vacuum annealing treatments, all CNT arrays can be repeatedly switched between superhydrophilic and superhydrophobic, as long as their O/C ratio is kept below 18%.
The effect of oxidation using UV/ozone and oxygen plasma treatments is highly reversible as long as the O/C ratio of the CNT arrays is kept below 18%. At O/C ratios higher than 18%, the effect of oxidation is no longer reversible. This irreversible oxidation is caused by irreversible changes to the CNT atomic structure during the oxidation process. During the oxidation process, CNT arrays undergo three different processes. For CNT arrays with O/C ratios lower than 40%, the oxidation process results in the functionalization of CNT outer walls by oxygenated groups. Although this functionalization process introduces defects, vacancies and micropores opening, the graphitic structure of the CNT is still largely intact. For CNT arrays with O/C ratios between 40% and 45%, the oxidation process results in the etching of CNT outer walls. This etching process introduces large scale defects and holes that can be obviously seen under TEM at high magnification. Most of these holes are found to be several layers deep and, in some cases, a large portion of the CNT side walls are cut open. For CNT arrays with O/C ratios higher than 45%, the oxidation process results in the exfoliation of the CNT walls and amorphization of the remaining CNT structure. This amorphization process can be implied from the disappearance of C-C sp2 peak in the XPS spectra associated with the pi-bond network.
The impact behavior of water droplet impinging on superhydrophobic CNT arrays in a low viscosity regime is investigated for the first time. Here, the experimental data are presented in the form of several important impact behavior characteristics including critical Weber number, volume ratio, restitution coefficient, and maximum spreading diameter. As observed experimentally, three different impact regimes are identified while another impact regime is proposed. These regimes are partitioned by three critical Weber numbers, two of which are experimentally observed. The volume ratio between the primary and the secondary droplets is found to decrease with the increase of Weber number in all impact regimes other than the first one. In the first impact regime, this is found to be independent of Weber number since the droplet remains intact during and subsequent to the impingement. Experimental data show that the coefficient of restitution decreases with the increase of Weber number in all impact regimes. The rate of decrease of the coefficient of restitution in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Experimental data also show that the maximum spreading factor increases with the increase of Weber number in all impact regimes. The rate of increase of the maximum spreading factor in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Phenomenological approximations and interpretations of the experimental data, as well as brief comparisons to the previously proposed scaling laws, are shown here.
Dry oxidation methods are used for the first time to characterize the influence of oxidation on the capacitive behavior of CNT array EDLCs. The capacitive behavior of CNT array EDLCs can be tailored by varying their oxygen content, represented by their O/C ratio. The specific capacitance of these CNT arrays increases with the increase of their oxygen content in both KOH and Et4NBF4/PC electrolytes. As a result, their gravimetric energy density increases with the increase of their oxygen content. However, their gravimetric power density decreases with the increase of their oxygen content. The optimally oxidized CNT arrays are able to withstand more than 35,000 charge/discharge cycles in Et4NBF4/PC at a current density of 5 A/g while only losing 10% of their original capacitance.
Resumo:
The interaction of SO_2 with γ - Al_2O_3 and the deposition of H_2 permselective SiO_2 films have been investigated. The adsorption and oxidative adsorption of SO_2 on γ - Al_2O_3 have been examined at temperatures 500-700°C by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). At temperatures above 500°C most of SO_2 adsorbed on the strong sites on alumina. The adsorbed SO_2 species was characterized by an IR band at 1065 cm^(-1). The equilibrium coverage and initial rate of adsorption decreased with temperature suggesting a two-step adsorption. When γ - Al_2O_3 was contacted with a mixture of SO_2 and O_2, adsorption of SO_2 and oxidation of the adsorbed SO_2 to a surface sulfate characterized by broad IR bands at 1070 cm^(-1), 1390 cm^(-1) took place. The results of a series of TGA experiments under different atmospheres strongly suggest that surface SO_2 and surface sulfate involve the same active sites such that SO_2 adsorption is inhibited by already formed sulfate. The results also indicate a broad range of site strengths.
The desorption of adsorbed SO_2 and the reductive desorption of oxidatively adsorbed SO_2 have been investigated by microreactor experiments and thermogravimetric analysis (TGA). Temperature programmed reduction (TPR) of adsorbed SO_2 showed that SO_2 was desorbed without significant reaction with H_2 when H_2 concentration was low while considerable reaction occurred when 100% H_2 was used. SO_2 adsorbed on the strong sites on alumina was reduced to sulfur and H_2S. The isothermal reduction experiments of oxidatively adsorbed SO_2 reveal that the rate of reduction is very slow below 550°C even with 100% H_2. The reduction product is mainly composed of SO_2. TPR experiments of oxidatively adsorbed SO_2 showed that H_2S arose from a sulfate strongly chemisorbed on the surface.
Films of amorphous SiO_2 were deposited within the walls of porous Vycor tubes by SiH_4 oxidation in an opposing reactants geometry : SiH_4 was passed inside the tube while O_2 was passed outside the tube. The two reactants diffused opposite to each other and reacted within a narrow front inside the tube wall to form a thin SiO_2 film. Once the pores were plugged the reactants could not reach each other and the reaction stopped. At 450°C and 0.1 and 0.33 atm of SiH_4 and O_2, the reaction was complete within 15 minutes. The thickness of the SiO_2 film was estimated to be about 0.1 µm. Measurements of H_2 and N_2 permeation rates showed that the SiO_2 film was highly selective to H_2 permeation. The H_2:N_2 flux at 450°C varied between 2000-3000.
Thin SiO_2 films were heat treated in different gas mixtures to determine their stability in functioning as high-temperature hydrogen-permselective membranes. The films were heat-treated at 450-700°C in dry N_2, dry O_2, N_2-H_2O, and O_2-H_2O mixtures. The permeation rates of H_2 and N_2 changed depending on the original conditions of film formation as well as on the heat treatment. Heating in dry N_2 slowly reduced the permeation rates of both H_2 and N_2. Heating in a N_2-H_2O atmosphere led to a steeper decline of H_2 permeability. But the permeation rate of N_2 increased or decreased according to whether the film deposition had been carried out in the absence or presence of H_2O vapor, respectively. Thermal treatment in O_2 caused rapid decline of the permeation rates of H_2 and N_2 in films that were deposited under dry conditions. The decline was moderate in films deposited under wet conditions.
Resumo:
Whereas stoichiometric activation of C-H bonds by complexes of transition metals is becoming increasingly common, selective functionalization of alkanes remains a formidable challenge in organometallic chemistry. The recent advances in catalytic alkane functionalization by transition-metal complexes are summarized in Chapter I.
The studies of the displacement of pentafluoropyridine in [(tmeda)Pt(CH_3)(NC_5F_5)][BAr^f_4] (1) with γ- tetrafluoropicoline, a very poor nucleophile, are reported in Chapter II. The ligand substitution occurs by a dissociative interchange mechanism. This result implies that dissociative loss of pentafluoropyridine is the rate-limiting step in the C-H activation reactions of 1.
Oxidation of dimethylplatinum(II) complexes (N-N)Pt(CH_3)_2 (N-N = tmeda(1), α-diimines) by dioxygen is described in Chapter III. Mechanistic studies suggest a two-step mechanism. First, a hydroperoxoplatinum(IV) complex is formed in a reaction between (N-N)Pt(CH_3)_2 and dioxygen. Next, the hydroperoxy complex reacts with a second equivalent of (N-N)Pt(CH_3)_2 to afford the final product, (N-N)Pt(OH)(OCH_3)(CH_3)_2. The hydroperoxy intermediate, (tmeda)Pt(OOH)(OCH_3)(CH_3)_2 (2), was isolated and characterized. The reactivity of 2 with several dime thylplatinum(II) complexes is reported.
The studies described in Chapter IV are directed toward the development of a platinum(II)-catalyzed oxidative alkane dehydrogenation. Stoichiometric conversion of alkanes (cyclohexane, ethane) to olefins (cyclohexene, ethylene) is achieved by C-H activation with [(N-N)Pt(CH_3)(CF_3CH_2OH)]BF_4 (1, N-N is N,N'-bis(3,5-di-t- butylphenyl)-1,4-diazabutadiene) which results in the formation of olefin hydride complexes. The first step in the C-H activation reaction is formation of a platinum(II) alkyl which undergoes β-hydrogen elimination to afford the olefin hydride complex. The cationic ethylplatinum(II) intermediate can be generated in situ by treating diethylplatinum(II) compounds with acids. Treatment of (phen)PtEt_2 with [H(OEt_2)_2]Bar^f_4 at low temperatures resulted in the formation of a mixture of [(phen)PtEt(OEt_2)]Bar^f_4 (8) and [(phen)Pt(C_2H_4)H] Bar^f_4 (7). The cationic olefin complexes are unreactive toward dioxygen or hydrogen peroxide. Since the success of the overall catalytic cycle depends on our ability to oxidize the olefin hydride complexes, a series of neutral olefin complexes of platinum(II) with monoanionic ligands (derivatives of pyrrole-2-carboxyaldehyde N-aryl imines) was prepared. Unfortunately, these are also stable to oxidation.
Resumo:
Smartphones and other powerful sensor-equipped consumer devices make it possible to sense the physical world at an unprecedented scale. Nearly 2 million Android and iOS devices are activated every day, each carrying numerous sensors and a high-speed internet connection. Whereas traditional sensor networks have typically deployed a fixed number of devices to sense a particular phenomena, community networks can grow as additional participants choose to install apps and join the network. In principle, this allows networks of thousands or millions of sensors to be created quickly and at low cost. However, making reliable inferences about the world using so many community sensors involves several challenges, including scalability, data quality, mobility, and user privacy.
This thesis focuses on how learning at both the sensor- and network-level can provide scalable techniques for data collection and event detection. First, this thesis considers the abstract problem of distributed algorithms for data collection, and proposes a distributed, online approach to selecting which set of sensors should be queried. In addition to providing theoretical guarantees for submodular objective functions, the approach is also compatible with local rules or heuristics for detecting and transmitting potentially valuable observations. Next, the thesis presents a decentralized algorithm for spatial event detection, and describes its use detecting strong earthquakes within the Caltech Community Seismic Network. Despite the fact that strong earthquakes are rare and complex events, and that community sensors can be very noisy, our decentralized anomaly detection approach obtains theoretical guarantees for event detection performance while simultaneously limiting the rate of false alarms.
Resumo:
Publications about olefin metathesis will generally discuss how the discovery and development of well-defined catalysts to carry out this unique transformation have revolutionized many fields, from natural product and materials chemistry, to green chemistry and biology. However, until recently, an entire manifestation of this methodology had been inaccessible. Except for a few select examples, metathesis catalysts favor the thermodynamic trans- or E-olefin products in cross metathesis (CM), macrocyclic ring closing metathesis (mRCM), ring opening metathesis polymerization (ROMP), and many other types of reactions. Judicious choice of substrates had allowed for the direct synthesis of cis- or Z-olefins or species that could be converted upon further reaction, however the catalyst controlled synthesis of Z-olefins was not possible until very recently.
Research into the structure and stability of metallacyclobutane intermediates has led to the proposal of models to impart Z-selectivity in metathesis reactions. Having the ability to influence the orientation of metallacyclobutane substituents to cause productive formation of Z- double bonds using steric and electronic effects was highly desired. The first successful realization of this concept was by Schrock and Hoveyda et al. who synthesized monoaryloxide pyrolidine (MAP) complexes of tungsten and molybdenum that promoted Z-selective CM. The Z-selectivity of these catalysts was attributed to the difference in the size of the two axial ligands. This size difference influences the orientation of the substituents on the forming/incipient metallacyclobutane intermediate to a cis-geometry and leads to productive formation of Z-olefins. These catalysts have shown great utility in the synthesis of complicated natural product precursors and stereoregular polymers. More recently, ruthenium catalysts capable of promoting Z-selective metathesis have been reported by our group and others. This thesis will discuss the development of ruthenium-based NHC chelated Z-selective catalysts, studies probing their unique metathesis mechanism, and synthetic applications that have been investigated thus far.
Chapter 1 will focus on studies into the stability of NHC chelated complexes and the synthesis of new and improved stable chelating architectures. Chapter 2 will discuss applications of the highly active and Z-selective developed in Chapter 1, including the formation of lepidopteran female sex pheromones using olefin cross metathesis and highly Z- and highly E-macrocycles using macrocyclic ring closing metathesis and Z-selective ethenolysis. Chapter 3 will explore studies into the unique mechanism of olefin metathesis reactions catalyzed by these NHC chelated, highly Z-selective catalysts, explaining observed trends by investigating the stability of relevant, substituted metallacyclobutane intermediates.
Resumo:
The development of catalysts that selectively oligomerize light olefins for uses in polymers and fuels remains of interest to the petrochemical and materials industry. For this purpose, two tantalum compounds, (FI)TaMe2Cl2 and (FI)TaMe4, implementing a previously reported phenoxy-imine (FI) ligand framework, have been synthesized and characterized with NMR spectroscopy and X-ray crystallography. When tested for ethylene oligomerization catalysis, (FI)TaMe2Cl2 was found to dimerize ethylene when activated with Et2Zn or EtMgCl, and (FI)TaMe4 dimerized ethylene when activated with B(C6F5)3, both at room temperature.
Resumo:
Films of Ti-Si-N obtained by reactively sputtering a TiSi_2, a Ti_5Si_3, or a Ti_3Si target are either amorphous or nanocrystalline in structure. The atomic density of some films exceeds 10^23 at./cm^3. The room-temperature resistivity of the films increases with the Si and the N content. A thermal treatment in vacuum at 700 °C for 1 hour decreases the resistivity of the Ti-rich films deposited from the Ti_5Si_3 or the Ti_3Si target, but increases that of the Si-rich films deposited from the TiSi_2 target when the nitrogen content exceeds about 30 at. %.
Ti_(34)Si_(23)N_(43) deposited from the Ti_5Si_3 target is an excellent diffusion barrier between Si and Cu. This film is a mixture of nanocrystalline TiN and amorphous SiN_x. Resistivity measurement from 80 K to 1073 K reveals that this film is electrically semiconductor-like as-deposited, and that it becomes metal-like after an hour annealing at 1000 °C in vacuum. A film of about 100 nm thick, with a resistivity of 660 µΩcm, maintains the stability of Si n+p shallow junction diodes with a 400 nm Cu overlayer up to 850 °C upon 30 min vacuum annealing. When used between Si and Al, the maximum temperature of stability is 550 °C for 30 min. This film can be etched in a CF_4/O_2 plasma.
The amorphous ternary metallic alloy Zr_(60)Al_(15)Ni_(25) was oxidized in dry oxygen in the temperature range 310 °C to 410 °C. Rutherford backscattering and cross-sectional transmission electron microscopy studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel is depleted from the oxide and enriched in the amorphous alloy below the oxide/alloy interface. The oxide layer thickness grows parabolically with the annealing duration, with a transport constant of 2.8x10^(-5) m^2/s x exp(-1.7 eV/kT). The oxidation rate is most likely controlled by the Ni diffusion in the amorphous alloy.
At later stages of the oxidation process, precipitates of nanocrystalline ZrO_2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy.
Resumo:
Isoprene (ISO),the most abundant non-methane VOC, is the major contributor to secondary organic aerosols (SOA) formation. The mechanisms involved in such transformation, however, are not fully understood. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields. The heightened awareness that ISO is only partially processed in the gas-phase has turned attention to heterogeneous processes as alternative pathways toward SOA.
During my research project, I investigated the photochemical oxidation of isoprene in bulk water. Below, I will report on the λ > 305 nm photolysis of H2O2 in dilute ISO solutions. This process yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. Several isomers of C10H15OH were resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. This finding is consistent with the addition of ·OH to ISO, followed by HO-ISO· reactions with ISO (in competition with O2) leading to second generation HO(ISO)2· radicals that terminate as C10H15OH via β-H abstraction by O2.
It is not generally realized that chemistry on the surface of water cannot be deduced, extrapolated or translated to those in bulk gas and liquid phases. The water density drops a thousand-fold within a few Angstroms through the gas-liquid interfacial region and therefore hydrophobic VOCs such as ISO will likely remain in these relatively 'dry' interfacial water layers rather than proceed into bulk water. In previous experiments from our laboratory, it was found that gas-phase olefins can be protonated on the surface of pH < 4 water. This phenomenon increases the residence time of gases at the interface, an event that makes them increasingly susceptible to interaction with gaseous atmospheric oxidants such as ozone and hydroxyl radicals.
In order to test this hypothesis, I carried out experiments in which ISO(g) collides with the surface of aqueous microdroplets of various compositions. Herein I report that ISO(g) is oxidized into soluble species via Fenton chemistry on the surface of aqueous Fe(II)Cl2 solutions simultaneously exposed to H2O2(g). Monomer and oligomeric species (ISO)1-8H+ were detected via online electrospray ionization mass spectrometry (ESI-MS) on the surface of pH ~ 2 water, and were then oxidized into a suite of products whose combined yields exceed ~ 5% of (ISO)1-8H+. MS/MS analysis revealed that products mainly consisted of alcohols, ketones, epoxides and acids. Our experiments demonstrated that olefins in ambient air may be oxidized upon impact on the surface of Fe-containing aqueous acidic media, such as those of typical to tropospheric aerosols.
Related experiments involving the reaction of ISO(g) with ·OH radicals from the photolysis of dissolved H2O2 were also carried out to test the surface oxidation of ISO(g) by photolyzing H2O2(aq) at 266 nm at various pH. The products were analyzed via online electrospray ionization mass spectrometry. Similar to our Fenton experiments, we detected (ISO)1-7H+ at pH < 4, and new m/z+ = 271 and m/z- = 76 products at pH > 5.
Resumo:
Transcription factor p53 is the most commonly altered gene in human cancer. As a redox-active protein in direct contact with DNA, p53 can directly sense oxidative stress through DNA-mediated charge transport. Electron hole transport occurs with a shallow distance dependence over long distances through the π-stacked DNA bases, leading to the oxidation and dissociation of DNA-bound p53. The extent of p53 dissociation depends upon the redox potential of the response element DNA in direct contact with each p53 monomer. The DNA sequence dependence of p53 oxidative dissociation was examined by electrophoretic mobility shift assays using radiolabeled oligonucleotides containing both synthetic and human p53 response elements with an appended anthraquinone photooxidant. Greater p53 dissociation is observed from DNA sequences containing low redox potential purine regions, particularly guanine triplets, within the p53 response element. Using denaturing polyacrylamide gel electrophoresis of irradiated anthraquinone-modified DNA, the DNA damage sites, which correspond to locations of preferred electron hole localization, were determined. The resulting DNA damage preferentially localizes to guanine doublets and triplets within the response element. Oxidative DNA damage is inhibited in the presence of p53, however, only at DNA sites within the response element, and therefore in direct contact with p53. From these data, predictions about the sensitivity of human p53-binding sites to oxidative stress, as well as possible biological implications, have been made. On the basis of our data, the guanine pattern within the purine region of each p53-binding site determines the response of p53 to DNA-mediated oxidation, yielding for some sequences the oxidative dissociation of p53 from a distance and thereby providing another potential role for DNA charge transport chemistry within the cell.
To determine whether the change in p53 response element occupancy observed in vitro also correlates in cellulo, chromatin immunoprecipition (ChIP) and quantitative PCR (qPCR) were used to directly quantify p53 binding to certain response elements in HCT116N cells. The HCT116N cells containing a wild type p53 were treated with the photooxidant [Rh(phi)2bpy]3+, Nutlin-3 to upregulate p53, and subsequently irradiated to induce oxidative genomic stress. To covalently tether p53 interacting with DNA, the cells were fixed with disuccinimidyl glutarate and formaldehyde. The nuclei of the harvested cells were isolated, sonicated, and immunoprecipitated using magnetic beads conjugated with a monoclonal p53 antibody. The purified immounoprecipiated DNA was then quantified via qPCR and genomic sequencing. Overall, the ChIP results were significantly varied over ten experimental trials, but one trend is observed overall: greater variation of p53 occupancy is observed in response elements from which oxidative dissociation would be expected, while significantly less change in p53 occupancy occurs for response elements from which oxidative dissociation would not be anticipated.
The chemical oxidation of transcription factor p53 via DNA CT was also investigated with respect to the protein at the amino acid level. Transcription factor p53 plays a critical role in the cellular response to stress stimuli, which may be modulated through the redox modulation of conserved cysteine residues within the DNA-binding domain. Residues within p53 that enable oxidative dissociation are herein investigated. Of the 8 mutants studied by electrophoretic mobility shift assay (EMSA), only the C275S mutation significantly decreased the protein affinity (KD) for the Gadd45 response element. EMSA assays of p53 oxidative dissociation promoted by photoexcitation of anthraquinone-tethered Gadd45 oligonucleotides were used to determine the influence of p53 mutations on oxidative dissociation; mutation to C275S severely attenuates oxidative dissociation while C277S substantially attenuates dissociation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide labeled, while oxidized cysteines participating in disulfide bonds were 13C2D2-iodoacetamide labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed using a QTRAP 6500 LC-MS/MS system, quantified with Skyline, and directly compared. A distinct shift in peptide labeling toward 13C2D2-iodoacetamide labeled cysteines is observed in oxidized samples as compared to the respective controls. All of the observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds potentially among the C124, C135, C141, C182, C275, and C277. Based on these data it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.
Resumo:
In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.
In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.
An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.
Resumo:
This dissertation primarily describes chemical-scale studies of nicotinic acetylcholine receptors (nAChRs) in order to better understand ligand-receptor selectivity and allosteric modulation influences during receptor activation. Electrophysiology coupled with canonical and non-canonical amino acids mutagenesis is used to probe subtle changes in receptor function.
The first half of this dissertation focuses on differential agonist selectivity of α4β2-containing nAChRs. The α4β2 nAChR can assemble in alternative stoichiometries as well as assemble with other accessory subunits. Chapter 2 identifies key structural residues that dictate binding and activation of three stoichiometry-dependent α4β2 receptor ligands: sazetidine-A, cytisine, and NS9283. These do not follow previously suggested hydrogen-bonding patterns of selectivity. Instead, three residues on the complementary subunit strongly influence binding ability of a ligand and receptor activation. Chapter 3 involves isolation of a α5α4β2 receptor-enriched population to test for a potential alternative agonist binding location at the α5 α4 interface. Results strongly suggest that agonist occupation of this site is not necessary for receptor activation and that the α5 subunit only incorporates at the accessory subunit location.
The second half of this dissertation seeks to identify residue interactions with positive allosteric modulators (PAMs) of the α7 nAChR. Chapter 4 focuses on methods development to study loss of potentiation of Type I PAMs, which indicate residues vital to propagation of PAM effects and/or binding. Chapter 5 investigates α7 receptor modulation by a Type II PAM (PNU 120596). These results show that PNU 120596 does not alter the agonist binding site, thus is relegated to influencing only the gating component of activation. From this, we were able to map a potential network of residues from the agonist binding site to the proposed PNU 120596 binding site that are essential for receptor potentiation.
Resumo:
Part I
A study of the thermal reaction of water vapor and parts-per-million concentrations of nitrogen dioxide was carried out at ambient temperature and at atmospheric pressure. Nitric oxide and nitric acid vapor were the principal products. The initial rate of disappearance of nitrogen dioxide was first order with respect to water vapor and second order with respect to nitrogen dioxide. An initial third-order rate constant of 5.5 (± 0.29) x 104 liter2 mole-2 sec-1 was found at 25˚C. The rate of reaction decreased with increasing temperature. In the temperature range of 25˚C to 50˚C, an activation energy of -978 (± 20) calories was found.
The reaction did not go to completion. From measurements as the reaction approached equilibrium, the free energy of nitric acid vapor was calculated. This value was -18.58 (± 0.04) kilocalories at 25˚C.
The initial rate of reaction was unaffected by the presence of oxygen and was retarded by the presence of nitric oxide. There were no appreciable effects due to the surface of the reactor. Nitric oxide and nitrogen dioxide were monitored by gas chromatography during the reaction.
Part II
The air oxidation of nitric oxide, and the oxidation of nitric oxide in the presence of water vapor, were studied in a glass reactor at ambient temperatures and at atmospheric pressure. The concentration of nitric oxide was less than 100 parts-per-million. The concentration of nitrogen dioxide was monitored by gas chromatography during the reaction.
For the dry oxidation, the third-order rate constant was 1.46 (± 0.03) x 104 liter2 mole-2 sec-1 at 25˚C. The activation energy, obtained from measurements between 25˚C and 50˚C, was -1.197 (±0.02) kilocalories.
The presence of water vapor during the oxidation caused the formation of nitrous acid vapor when nitric oxide, nitrogen dioxide and water vapor combined. By measuring the difference between the concentrations of nitrogen dioxide during the wet and dry oxidations, the rate of formation of nitrous acid vapor was found. The third-order rate constant for the formation of nitrous acid vapor was equal to 1.5 (± 0.5) x 105 liter2 mole-2 sec-1 at 40˚C. The reaction rate did not change measurably when the temperature was increased to 50˚C. The formation of nitric acid vapor was prevented by keeping the concentration of nitrogen dioxide low.
Surface effects were appreciable for the wet tests. Below 35˚C, the rate of appearance of nitrogen dioxide increased with increasing surface. Above 40˚C, the effect of surface was small.