2 resultados para Robustness Analysis
em CaltechTHESIS
Resumo:
This dissertation reformulates and streamlines the core tools of robustness analysis for linear time invariant systems using now-standard methods in convex optimization. In particular, robust performance analysis can be formulated as a primal convex optimization in the form of a semidefinite program using a semidefinite representation of a set of Gramians. The same approach with semidefinite programming duality is applied to develop a linear matrix inequality test for well-connectedness analysis, and many existing results such as the Kalman-Yakubovich--Popov lemma and various scaled small gain tests are derived in an elegant fashion. More importantly, unlike the classical approach, a decision variable in this novel optimization framework contains all inner products of signals in a system, and an algorithm for constructing an input and state pair of a system corresponding to the optimal solution of robustness optimization is presented based on this information. This insight may open up new research directions, and as one such example, this dissertation proposes a semidefinite programming relaxation of a cardinality constrained variant of the H ∞ norm, which we term sparse H ∞ analysis, where an adversarial disturbance can use only a limited number of channels. Finally, sparse H ∞ analysis is applied to the linearized swing dynamics in order to detect potential vulnerable spots in power networks.
Resumo:
The two most important digital-system design goals today are to reduce power consumption and to increase reliability. Reductions in power consumption improve battery life in the mobile space and reductions in energy lower operating costs in the datacenter. Increased robustness and reliability shorten down time, improve yield, and are invaluable in the context of safety-critical systems. While optimizing towards these two goals is important at all design levels, optimizations at the circuit level have the furthest reaching effects; they apply to all digital systems. This dissertation presents a study of robust minimum-energy digital circuit design and analysis. It introduces new device models, metrics, and methods of calculation—all necessary first steps towards building better systems—and demonstrates how to apply these techniques. It analyzes a fabricated chip (a full-custom QDI microcontroller designed at Caltech and taped-out in 40-nm silicon) by calculating the minimum energy operating point and quantifying the chip’s robustness in the face of both timing and functional failures.