15 resultados para Restricted three body problem
em CaltechTHESIS
Resumo:
Reactions produced by the He3 bombardment of the He3 have been investigated for bombarding energies from 1 to 20 MeV using a tandem Van de Graaff accelerator. Proton spectra from the three-body reaction He3(He3, 2p)He4 have been measured with a counter telescope at 13 angles for 9 bombarding energies between 3 and 18 MeV. The results are compared with a model for the reaction which includes a strong p-He4 final-state interaction. Alpha-particle spectra have been obtained at 12 and 18 MeV for forward angles with a magnetic spectrometer. These spectra indicate a strongly forward-peaked mechanism involving the 1S0 p-p interaction in addition to the p-He4 interaction. Measurements of p-He4 and p-p coincidence spectra at 10 MeV confirm these features of the reaction mechanism. Deuteron spectra from the reaction of He3(He3, d)pHe3 have been measured at 18 MeV. A triton spectrum from the reaction He3(He3, t)3p at 20 MeV and 40 is interpreted in terms of a sequential decay through an excited state of the alpha particle at 20.0 MeV. No effects are observed which would indicate an interaction in the residual (3p) system. Below 3 MeV the He3(He3, 2p)He4 reaction mechanism is observed to be changing and further measurements are suggested in view of the importance of this reaction in stellar interiors.
Resumo:
Multi-finger caging offers a rigorous and robust approach to robot grasping. This thesis provides several novel algorithms for caging polygons and polyhedra in two and three dimensions. Caging refers to a robotic grasp that does not necessarily immobilize an object, but prevents it from escaping to infinity. The first algorithm considers caging a polygon in two dimensions using two point fingers. The second algorithm extends the first to three dimensions. The third algorithm considers caging a convex polygon in two dimensions using three point fingers, and considers robustness of this cage to variations in the relative positions of the fingers.
This thesis describes an algorithm for finding all two-finger cage formations of planar polygonal objects based on a contact-space formulation. It shows that two-finger cages have several useful properties in contact space. First, the critical points of the cage representation in the hand’s configuration space appear as critical points of the inter-finger distance function in contact space. Second, these critical points can be graphically characterized directly on the object’s boundary. Third, contact space admits a natural rectangular decomposition such that all critical points lie on the rectangle boundaries, and the sublevel sets of contact space and free space are topologically equivalent. These properties lead to a caging graph that can be readily constructed in contact space. Starting from a desired immobilizing grasp of a polygonal object, the caging graph is searched for the minimal, intermediate, and maximal caging regions surrounding the immobilizing grasp. An example constructed from real-world data illustrates and validates the method.
A second algorithm is developed for finding caging formations of a 3D polyhedron for two point fingers using a lower dimensional contact-space formulation. Results from the two-dimensional algorithm are extended to three dimension. Critical points of the inter-finger distance function are shown to be identical to the critical points of the cage. A decomposition of contact space into 4D regions having useful properties is demonstrated. A geometric analysis of the critical points of the inter-finger distance function results in a catalog of grasps in which the cages change topology, leading to a simple test to classify critical points. With these properties established, the search algorithm from the two-dimensional case may be applied to the three-dimensional problem. An implemented example demonstrates the method.
This thesis also presents a study of cages of convex polygonal objects using three point fingers. It considers a three-parameter model of the relative position of the fingers, which gives complete generality for three point fingers in the plane. It analyzes robustness of caging grasps to variations in the relative position of the fingers without breaking the cage. Using a simple decomposition of free space around the polygon, we present an algorithm which gives all caging placements of the fingers and a characterization of the robustness of these cages.
Resumo:
Part I
Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement.
Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes.
The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an “enhancement factor” to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth.
Part II
Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, \lambda_{R}, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.
Resumo:
This dissertation consists of two parts. The first part presents an explicit procedure for applying multi-Regge theory to production processes. As an illustrative example, the case of three body final states is developed in detail, both with respect to kinematics and multi-Regge dynamics. Next, the experimental consistency of the multi-Regge hypothesis is tested in a specific high energy reaction; the hypothesis is shown to provide a good qualitative fit to the data. In addition, the results demonstrate a severe suppression of double Pomeranchon exchange, and show the coupling of two "Reggeons" to an external particle to be strongly damped as the particle's mass increases. Finally, with the use of two body Regge parameters, order of magnitude estimates of the multi-Regge cross section for various reactions are given.
The second part presents a diffraction model for high energy proton-proton scattering. This model developed by Chou and Yang assumes high energy elastic scattering results from absorption of the incident wave into the many available inelastic channels, with the absorption proportional to the amount of interpenetrating hadronic matter. The assumption that the hadronic matter distribution is proportional to the charge distribution relates the scattering amplitude for pp scattering to the proton form factor. The Chou-Yang model with the empirical proton form factor as input is then applied to calculate a high energy, fixed momentum transfer limit for the scattering cross section, This limiting cross section exhibits the same "dip" or "break" structure indicated in present experiments, but falls significantly below them in magnitude. Finally, possible spin dependence is introduced through a weak spin-orbit type term which gives rather good agreement with pp polarization data.
Resumo:
The energy spectra of tritons and Helium-3 nuclei from the reactions 3He(d,t)2p, 3H(d,3He)2n, 3He(d,3He)pn, and 3H(d,t)pn were measured between 6° and 20° at a bombarding energy of 10.9 MeV. An upper limit of 5 μb/sr. was obtained for producing a bound di-neutron at 6° and 7.5°. The 3He(d,t)2p and 3H(d,3He)2n data, together with previous measurements at higher energies, have been used to investigate whether one can unambiguously extract information on the two-nucleon system from these three-body final state reactions. As an aid to these theoretical investigations, Born approximation calculations were made employing realistic nucleon-nucleon potentials and an antisymmetrized final state wave function for the five-particle system. These calculations reproduce many of the features observed in the experimental data and indicate that the role of exchange processes cannot be ignored. The results show that previous attempts to obtain information on the neutron-neutron scattering length from the 3H(d,3He)2n reaction may have seriously overestimated the precision that could be attained.
Resumo:
The reaction γ + p p + π+ + π- has been studied for photon energies between 800 and 1500 MeV and for dipion masses between 510 and 900 MeV. The bremsstrahlung beam from the Caltech synchrotron was passed through a liquid hydrogen target and spark chambers were used to detect the three final particles. In addition, the proton energy was determined by a range measurement. Approximately 40,000 photographs were taken, yielding 3018 acceptable events. The results were fit to an incoherent combination of the N*(1238) resonance, the po (750) resonance, and three-body phase space, with various models being tried for po production. The total cross section for po production is consistent with previous experiments. However, the angular dependence of the cross section is slightly more peaked in the forward direction, and the ratio of po production to phase space production is larger than previously observed.
However, since this experiment was only sensitive to the production angles cos θ cm ≥ .75, statistical fluctuations and/or an anisotropic distribution of background production have a severe influence on the po to background ratio. Of the po models tested, the results prefer po production by the one pion exchange mechanism with a very steep form factor dependence. The values of the mass and width of the po found here are consistent with previous experiments.
Resumo:
X-ray diffraction measurements and subsequent data analyses have been carried out on liquid argon at five states in the density range of 0.91 to 1.135 gm/cc and temperature range of 127 to 143°K. Duplicate measurements were made on all states. These data yielded radial distribution and direct correlation functions which were then used to compute the pair potential using the Percus-Yevick equation. The potential minima are in the range of -105 to -120°K and appear to substantiate current theoretical estimates of the effective pair potential in the presence of a weak three-body force.
The data analysis procedure used was new and does not distinguish between the coherent and incoherent absorption factors for the cell scattering which were essentially equal. With this simplification, the argon scattering estimate was compared to the gas scattering estimate on the laboratory frame of reference and the two estimates coincided, indicating the data normalized. The argon scattering on the laboratory frame of reference was examined for the existence of the peaks in the structure factor and the existence of an observable third peak was considered doubtful.
Numerical studies of the effect of truncation, normalization, the subsidiary peak phenomenon in the radial distribution function, uncertainties in the low angle data relative to errors in the direct correlation function and the distortion phenomenon are presented.
The distortion phenomenon for this experiment explains why the Mikolaj-Pings argon data yielded pair potential well depths from the Percus-Yevick equation that were too shallow and an apparent slope with respect to density that was too steep compared to theoretical estimates.
The data presented for each measurement are: empty cell and cell plus argon intensity, absorption factors, argon intensity, smoothed argon intensity, smoothed argon intensity corrected for distortion, structure factor, radial distribution function, direct correlation function and the pair potential from the Percus-Yevick equation.
Resumo:
The problem of the continuation to complex values of the angular momentum of the partial wave amplitude is examined for the simplest production process, that of two particles → three particles. The presence of so-called "anomalous singularities" complicates the procedure followed relative to that used for quasi two-body scattering amplitudes. The anomalous singularities are shown to lead to exchange degenerate amplitudes with possible poles in much the same way as "normal" singularities lead to the usual signatured amplitudes. The resulting exchange-degenerate trajectories would also be expected to occur in two-body amplitudes.
The representation of the production amplitude in terms of the singularities of the partial wave amplitude is then developed and applied to the high energy region, with attention being paid to the emergence of "double Regge" terms. Certain new results are obtained for the behavior of the amplitude at zero momentum transfer, and some predictions of polarization and minima in momentum transfer distributions are made. A calculation of the polarization of the ρo meson in the reaction π - p → π - ρop at high energy with small momentum transfer to the proton is compared with data taken at 25 Gev by W. D. Walker and collaborators. The result is favorable, although limited by the statistics of the available data.
Resumo:
Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.
The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.
The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.
Resumo:
Part I.
We have developed a technique for measuring the depth time history of rigid body penetration into brittle materials (hard rocks and concretes) under a deceleration of ~ 105 g. The technique includes bar-coded projectile, sabot-projectile separation, detection and recording systems. Because the technique can give very dense data on penetration depth time history, penetration velocity can be deduced. Error analysis shows that the technique has a small intrinsic error of ~ 3-4 % in time during penetration, and 0.3 to 0.7 mm in penetration depth. A series of 4140 steel projectile penetration into G-mixture mortar targets have been conducted using the Caltech 40 mm gas/ powder gun in the velocity range of 100 to 500 m/s.
We report, for the first time, the whole depth-time history of rigid body penetration into brittle materials (the G-mixture mortar) under 105 g deceleration. Based on the experimental results, including penetration depth time history, damage of recovered target and projectile materials and theoretical analysis, we find:
1. Target materials are damaged via compacting in the region in front of a projectile and via brittle radial and lateral crack propagation in the region surrounding the penetration path. The results suggest that expected cracks in front of penetrators may be stopped by a comminuted region that is induced by wave propagation. Aggregate erosion on the projectile lateral surface is < 20% of the final penetration depth. This result suggests that the effect of lateral friction on the penetration process can be ignored.
2. Final penetration depth, Pmax, is linearly scaled with initial projectile energy per unit cross-section area, es , when targets are intact after impact. Based on the experimental data on the mortar targets, the relation is Pmax(mm) 1.15es (J/mm2 ) + 16.39.
3. Estimation of the energy needed to create an unit penetration volume suggests that the average pressure acting on the target material during penetration is ~ 10 to 20 times higher than the unconfined strength of target materials under quasi-static loading, and 3 to 4 times higher than the possible highest pressure due to friction and material strength and its rate dependence. In addition, the experimental data show that the interaction between cracks and the target free surface significantly affects the penetration process.
4. Based on the fact that the penetration duration, tmax, increases slowly with es and does not depend on projectile radius approximately, the dependence of tmax on projectile length is suggested to be described by tmax(μs) = 2.08es (J/mm2 + 349.0 x m/(πR2), in which m is the projectile mass in grams and R is the projectile radius in mm. The prediction from this relation is in reasonable agreement with the experimental data for different projectile lengths.
5. Deduced penetration velocity time histories suggest that whole penetration history is divided into three stages: (1) An initial stage in which the projectile velocity change is small due to very small contact area between the projectile and target materials; (2) A steady penetration stage in which projectile velocity continues to decrease smoothly; (3) A penetration stop stage in which projectile deceleration jumps up when velocities are close to a critical value of ~ 35 m/s.
6. Deduced averaged deceleration, a, in the steady penetration stage for projectiles with same dimensions is found to be a(g) = 192.4v + 1.89 x 104, where v is initial projectile velocity in m/s. The average pressure acting on target materials during penetration is estimated to be very comparable to shock wave pressure.
7. A similarity of penetration process is found to be described by a relation between normalized penetration depth, P/Pmax, and normalized penetration time, t/tmax, as P/Pmax = f(t/tmax, where f is a function of t/tmax. After f(t/tmax is determined using experimental data for projectiles with 150 mm length, the penetration depth time history for projectiles with 100 mm length predicted by this relation is in good agreement with experimental data. This similarity also predicts that average deceleration increases with decreasing projectile length, that is verified by the experimental data.
8. Based on the penetration process analysis and the present data, a first principle model for rigid body penetration is suggested. The model incorporates the models for contact area between projectile and target materials, friction coefficient, penetration stop criterion, and normal stress on the projectile surface. The most important assumptions used in the model are: (1) The penetration process can be treated as a series of impact events, therefore, pressure normal to projectile surface is estimated using the Hugoniot relation of target material; (2) The necessary condition for penetration is that the pressure acting on target materials is not lower than the Hugoniot elastic limit; (3) The friction force on projectile lateral surface can be ignored due to cavitation during penetration. All the parameters involved in the model are determined based on independent experimental data. The penetration depth time histories predicted from the model are in good agreement with the experimental data.
9. Based on planar impact and previous quasi-static experimental data, the strain rate dependence of the mortar compressive strength is described by σf/σ0f = exp(0.0905(log(έ/έ_0) 1.14, in the strain rate range of 10-7/s to 103/s (σ0f and έ are reference compressive strength and strain rate, respectively). The non-dispersive Hugoniot elastic wave in the G-mixture has an amplitude of ~ 0.14 GPa and a velocity of ~ 4.3 km/s.
Part II.
Stress wave profiles in vitreous GeO2 were measured using piezoresistance gauges in the pressure range of 5 to 18 GPa under planar plate and spherical projectile impact. Experimental data show that the response of vitreous GeO2 to planar shock loading can be divided into three stages: (1) A ramp elastic precursor has peak amplitude of 4 GPa and peak particle velocity of 333 m/s. Wave velocity decreases from initial longitudinal elastic wave velocity of 3.5 km/s to 2.9 km/s at 4 GPa; (2) A ramp wave with amplitude of 2.11 GPa follows the precursor when peak loading pressure is 8.4 GPa. Wave velocity drops to the value below bulk wave velocity in this stage; (3) A shock wave achieving final shock state forms when peak pressure is > 6 GPa. The Hugoniot relation is D = 0.917 + 1.711u (km/s) using present data and the data of Jackson and Ahrens [1979] when shock wave pressure is between 6 and 40 GPa for ρ0 = 3.655 gj cm3 . Based on the present data, the phase change from 4-fold to 6-fold coordination of Ge+4 with O-2 in vitreous GeO2 occurs in the pressure range of 4 to 15 ± 1 GPa under planar shock loading. Comparison of the shock loading data for fused SiO2 to that on vitreous GeO2 demonstrates that transformation to the rutile structure in both media are similar. The Hugoniots of vitreous GeO2 and fused SiO2 are found to coincide approximately if pressure in fused SiO2 is scaled by the ratio of fused SiO2to vitreous GeO2 density. This result, as well as the same structure, provides the basis for considering vitreous Ge02 as an analogous material to fused SiO2 under shock loading. Experimental results from the spherical projectile impact demonstrate: (1) The supported elastic shock in fused SiO2 decays less rapidly than a linear elastic wave when elastic wave stress amplitude is higher than 4 GPa. The supported elastic shock in vitreous GeO2 decays faster than a linear elastic wave; (2) In vitreous GeO2 , unsupported shock waves decays with peak pressure in the phase transition range (4-15 GPa) with propagation distance, x, as α 1/x-3.35 , close to the prediction of Chen et al. [1998]. Based on a simple analysis on spherical wave propagation, we find that the different decay rates of a spherical elastic wave in fused SiO2 and vitreous GeO2 is predictable on the base of the compressibility variation with stress under one-dimensional strain condition in the two materials.
Resumo:
In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.
Resumo:
Disorder and interactions both play crucial roles in quantum transport. Decades ago, Mott showed that electron-electron interactions can lead to insulating behavior in materials that conventional band theory predicts to be conducting. Soon thereafter, Anderson demonstrated that disorder can localize a quantum particle through the wave interference phenomenon of Anderson localization. Although interactions and disorder both separately induce insulating behavior, the interplay of these two ingredients is subtle and often leads to surprising behavior at the periphery of our current understanding. Modern experiments probe these phenomena in a variety of contexts (e.g. disordered superconductors, cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are urgently needed. In this thesis, we report progress on understanding two contexts in which the interplay of disorder and interactions is especially important.
The first is the so-called “dirty” or random boson problem. In the past decade, a strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov, and Refael has raised the possibility of a new unstable fixed point governing the superfluid-insulator transition in the one-dimensional dirty boson problem. This new critical behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when disorder is sufficiently strong. We analytically determine the scaling of the superfluid susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte Carlo simulations by Hrahsheh and Vojta. We then shift our attention to two dimensions and use a numerical implementation of the SDRG to locate the fixed point governing the superfluid-insulator transition there. We identify several universal properties of this transition, which are fully independent of the microscopic features of the disorder.
The second focus of this thesis is the interplay of localization and interactions in systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.
Resumo:
This thesis is comprised of three chapters, each of which is concerned with properties of allocational mechanisms which include voting procedures as part of their operation. The theme of interaction between economic and political forces recurs in the three chapters, as described below.
Chapter One demonstrates existence of a non-controlling interest shareholders' equilibrium for a stylized one-period stock market economy with fewer securities than states of the world. The economy has two decision mechanisms: Owners vote to change firms' production plans across states, fixing shareholdings; and individuals trade shares and the current production / consumption good, fixing production plans. A shareholders' equilibrium is a production plan profile, and a shares / current good allocation stable for both mechanisms. In equilibrium, no (Kramer direction-restricted) plan revision is supported by a share-weighted majority, and there exists no Pareto superior reallocation.
Chapter Two addresses efficient management of stationary-site, fixed-budget, partisan voter registration drives. Sufficient conditions obtain for unique optimal registrar deployment within contested districts. Each census tract is assigned an expected net plurality return to registration investment index, computed from estimates of registration, partisanship, and turnout. Optimum registration intensity is a logarithmic transformation of a tract's index. These conditions are tested using a merged data set including both census variables and Los Angeles County Registrar data from several 1984 Assembly registration drives. Marginal registration spending benefits, registrar compensation, and the general campaign problem are also discussed.
The last chapter considers social decision procedures at a higher level of abstraction. Chapter Three analyzes the structure of decisive coalition families, given a quasitransitive-valued social decision procedure satisfying the universal domain and ITA axioms. By identifying those alternatives X* ⊆ X on which the Pareto principle fails, imposition in the social ranking is characterized. Every coaliton is weakly decisive for X* over X~X*, and weakly antidecisive for X~X* over X*; therefore, alternatives in X~X* are never socially ranked above X*. Repeated filtering of alternatives causing Pareto failure shows states in X^n*~X^((n+1))* are never socially ranked above X^((n+1))*. Limiting results of iterated application of the *-operator are also discussed.
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.
Resumo:
As a simplified approach for estimating theoretically the influence of local subsoils upon the ground motion during an earthquake, the problem of an idealized layered system subjected to vertically incident plane body waves was studied. Both the technique of steady-state analysis and the technique of transient analysis have been used to analyze the problem.
In the steady-state analysis, a recursion formula has been derived for obtaining the response of a layered system to sinusoidally steady-state input. Several conclusions are drawn concerning the nature of the amplification spectrum of a nonviscous layered system having its layer stiffnesses increasing with depth. Numerical examples are given to demonstrate the effect of layer parameters on the amplification spectrum of a layered system.
In the transient analysis, two modified shear beam models have been established for obtaining approximately the response of a layered system to earthquake-like excitation. The method of continuous modal analysis was adopted for approximate analysis of the models, with energy dissipation in the layers, if any, taken into account. Numerical examples are given to demonstrate the accuracy of the models and the effect of a layered system in modifying the input motion.
Conditions are established, under which the theory is applicable to predict the influence of local subsoils on the ground motion during an earthquake. To demonstrate the applicability of the models to actual cases, three examples of actually recorded earthquake events are examined. It is concluded that significant modification of the incoming seismic waves, as predicted by the theory, is likely to occur in well defined soft subsoils during an earthquake, provided that certain conditions concerning the nature of the incoming seismic waves are satisfied.