3 resultados para Resilience

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous metals that form fully glassy parts over a few millimeters in thickness are still relatively new materials. Their glassy structure gives them particularly high strengths, high yield strains, high hardness values, high resilience, and low damping losses, but this can also result in an extremely low tolerance to the presence of flaws in the material. Since this glassy structure lacks the ordered crystal structure, it also lacks the crystalline defect (dislocations) that provides the micromechanism of toughening and flaw insensitivity in conventional metals. Without a sufficient and reliable toughness that results in a large tolerance of damage in the material, metallic glasses will struggle to be adopted commercially. Here, we identify the origin of toughness in metallic glass as the competition between the intrinsic toughening mechanism of shear banding ahead of a crack and crack propagation by the cavitation of the liquid inside the shear bands. We present a detailed study over the first three chapters mainly focusing on the process of shear banding; its crucial role in giving rise to one of the most damage-tolerant materials known, its extreme sensitivity to the configurational state of a glass with moderate toughness, and how the configurational state can be changed with the addition of minor elements. The last chapter is a novel investigation into the cavitation barrier in glass-forming liquids, the competing process to shear banding. The combination of our results represents an increased understanding of the major influences on the fracture toughness of metallic glasses and thus provides a path for the improvement and development of tougher metallic glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream.

The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind.

In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prime thrust of this dissertation is to advance the development of fuel cell dioxygen reduction cathodes that employ some variant of multicopper oxidase enzymes as the catalyst. The low earth-abundance of platinum metal and its correspondingly high market cost has prompted a general search amongst chemists and materials scientists for reasonable alternatives to this metal for facilitating catalytic dioxygen reduction chemistry. The multicopper oxidases (MCOs), which constitute a class of enzyme that naturally catalyze the reaction O2 + 4H+ + 4e- → 2H2O, provide a promising set of biochemical contenders for fuel cell cathode catalysts. In MCOs, a substrate reduces a copper atom at the type 1 site, where charge is then transferred to a trinuclear copper cluster consisting of a mononuclear type 2 or “normal copper” site and a binuclear type 3 copper site. Following the reduction of all four copper atoms in the enzyme, dioxygen is then reduced to water in two two-electron steps, upon binding to the trinuclear copper cluster. We identified an MCO, a laccase from the hyperthermophilic bacterium Thermus thermophilus strain HB27, as a promising candidate for cathodic fuel cell catalysis. This protein demonstrates resilience at high temperatures, exhibiting no denaturing transition at temperatures high as 95°C, conditions relevant to typical polymer electrolyte fuel cell operation.

In Chapter I of this thesis, we discuss initial efforts to physically characterize the enzyme when operating as a heterogeneous cathode catalyst. Following this, in Chapter II we then outline the development of a model capable of describing the observed electrochemical behavior of this enzyme when operating on porous carbon electrodes. Developing a rigorous mathematical framework with which to describe this system had the potential to improve our understanding of MCO electrokinetics, while also providing a level of predictive power that might guide any future efforts to fabricate MCO cathodes with optimized electrochemical performance. In Chapter III we detail efforts to reduce electrode overpotentials through site-directed mutagenesis of the inner and outer-sphere ligands of the Cu sites in laccase, using electrochemical methods and electronic spectroscopy to try and understand the resultant behavior of our mutant constructs. Finally, in Chapter IV, we examine future work concerning the fabrication of enhanced MCO cathodes, exploring the possibility of new cathode materials and advanced enzyme deposition techniques.