2 resultados para Reproducing Transformation Method
em CaltechTHESIS
Resumo:
The subject under investigation concerns the steady surface wave patterns created by small concentrated disturbances acting on a non-uniform flow of a heavy fluid. The initial value problem of a point disturbance in a primary flow having an arbitrary velocity distribution (U(y), 0, 0) in a direction parallel to the undisturbed free surface is formulated. A geometric optics method and the classical integral transformation method are employed as two different methods of solution for this problem. Whenever necessary, the special case of linear shear (i.e. U(y) = 1+ϵy)) is chosen for the purpose of facilitating the final integration of the solution.
The asymptotic form of the solution obtained by the method of integral transforms agrees with the leading terms of the solution obtained by geometric optics when the latter is expanded in powers of small ϵ r.
The overall effect of the shear is to confine the wave field on the downstream side of the disturbance to a region which is smaller than the wave region in the case of uniform flows. If U(y) vanishes, and changes sign at a critical plane y = ycr (e.g. ϵycr = -1 for the case of linear shear), then the boundary of this asymmetric wave field approaches this critical vertical plane. On this boundary the wave crests are all perpendicular to the x-axis, indicating that waves are reflected at this boundary.
Inside the wave field, as in the case of a point disturbance in a uniform primary flow, there exist two wave systems. The loci of constant phases (such as the crests or troughs) of these wave systems are not symmetric with respect to the x-axis. The geometric optics method and the integral transform method yield the same result of these loci for the special case of U(y) = Uo(1 + ϵy) and for large Kr (ϵr ˂˂ 1 ˂˂ Kr).
An expression for the variation of the amplitude of the waves in the wave field is obtained by the integral transform method. This is in the form of an expansion in small ϵr. The zeroth order is identical to the expression for the uniform stream case and is thus not applicable near the boundary of the wave region because it becomes infinite in that neighborhood. Throughout this investigation the viscous terms in the equations of motion are neglected, a reasonable assumption which can be justified when the wavelengths of the resulting waves are sufficiently large.
Resumo:
Inspired by key experimental and analytical results regarding Shape Memory Alloys (SMAs), we propose a modelling framework to explore the interplay between martensitic phase transformations and plastic slip in polycrystalline materials, with an eye towards computational efficiency. The resulting framework uses a convexified potential for the internal energy density to capture the stored energy associated with transformation at the meso-scale, and introduces kinetic potentials to govern the evolution of transformation and plastic slip. The framework is novel in the way it treats plasticity on par with transformation.
We implement the framework in the setting of anti-plane shear, using a staggered implicit/explict update: we first use a Fast-Fourier Transform (FFT) solver based on an Augmented Lagrangian formulation to implicitly solve for the full-field displacements of a simulated polycrystal, then explicitly update the volume fraction of martensite and plastic slip using their respective stick-slip type kinetic laws. We observe that, even in this simple setting with an idealized material comprising four martensitic variants and four slip systems, the model recovers a rich variety of SMA type behaviors. We use this model to gain insight into the isothermal behavior of stress-stabilized martensite, looking at the effects of the relative plastic yield strength, the memory of deformation history under non-proportional loading, and several others.
We extend the framework to the generalized 3-D setting, for which the convexified potential is a lower bound on the actual internal energy, and show that the fully implicit discrete time formulation of the framework is governed by a variational principle for mechanical equilibrium. We further propose an extension of the method to finite deformations via an exponential mapping. We implement the generalized framework using an existing Optimal Transport Mesh-free (OTM) solver. We then model the $\alpha$--$\gamma$ and $\alpha$--$\varepsilon$ transformations in pure iron, with an initial attempt in the latter to account for twinning in the parent phase. We demonstrate the scalability of the framework to large scale computing by simulating Taylor impact experiments, observing nearly linear (ideal) speed-up through 256 MPI tasks. Finally, we present preliminary results of a simulated Split-Hopkinson Pressure Bar (SHPB) experiment using the $\alpha$--$\varepsilon$ model.