17 resultados para Real transformation
em CaltechTHESIS
Resumo:
The matrices studied here are positive stable (or briefly stable). These are matrices, real or complex, whose eigenvalues have positive real parts. A theorem of Lyapunov states that A is stable if and only if there exists H ˃ 0 such that AH + HA* = I. Let A be a stable matrix. Three aspects of the Lyapunov transformation LA :H → AH + HA* are discussed.
1. Let C1 (A) = {AH + HA* :H ≥ 0} and C2 (A) = {H: AH+HA* ≥ 0}. The problems of determining the cones C1(A) and C2(A) are still unsolved. Using solvability theory for linear equations over cones it is proved that C1(A) is the polar of C2(A*), and it is also shown that C1 (A) = C1(A-1). The inertia assumed by matrices in C1(A) is characterized.
2. The index of dissipation of A was defined to be the maximum number of equal eigenvalues of H, where H runs through all matrices in the interior of C2(A). Upper and lower bounds, as well as some properties of this index, are given.
3. We consider the minimal eigenvalue of the Lyapunov transform AH+HA*, where H varies over the set of all positive semi-definite matrices whose largest eigenvalue is less than or equal to one. Denote it by ψ(A). It is proved that if A is Hermitian and has eigenvalues μ1 ≥ μ2…≥ μn ˃ 0, then ψ(A) = -(μ1-μn)2/(4(μ1 + μn)). The value of ψ(A) is also determined in case A is a normal, stable matrix. Then ψ(A) can be expressed in terms of at most three of the eigenvalues of A. If A is an arbitrary stable matrix, then upper and lower bounds for ψ(A) are obtained.
Resumo:
Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.
The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.
The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.
Resumo:
We consider the following singularly perturbed linear two-point boundary-value problem:
Ly(x) ≡ Ω(ε)D_xy(x) - A(x,ε)y(x) = f(x,ε) 0≤x≤1 (1a)
By ≡ L(ε)y(0) + R(ε)y(1) = g(ε) ε → 0^+ (1b)
Here Ω(ε) is a diagonal matrix whose first m diagonal elements are 1 and last m elements are ε. Aside from reasonable continuity conditions placed on A, L, R, f, g, we assume the lower right mxm principle submatrix of A has no eigenvalues whose real part is zero. Under these assumptions a constructive technique is used to derive sufficient conditions for the existence of a unique solution of (1). These sufficient conditions are used to define when (1) is a regular problem. It is then shown that as ε → 0^+ the solution of a regular problem exists and converges on every closed subinterval of (0,1) to a solution of the reduced problem. The reduced problem consists of the differential equation obtained by formally setting ε equal to zero in (1a) and initial conditions obtained from the boundary conditions (1b). Several examples of regular problems are also considered.
A similar technique is used to derive the properties of the solution of a particular difference scheme used to approximate (1). Under restrictions on the boundary conditions (1b) it is shown that for the stepsize much larger than ε the solution of the difference scheme, when applied to a regular problem, accurately represents the solution of the reduced problem.
Furthermore, the existence of a similarity transformation which block diagonalizes a matrix is presented as well as exponential bounds on certain fundamental solution matrices associated with the problem (1).
Resumo:
A large number of technologically important materials undergo solid-solid phase transformations. Examples range from ferroelectrics (transducers and memory devices), zirconia (Thermal Barrier Coatings) to nickel superalloys and (lithium) iron phosphate (Li-ion batteries). These transformations involve a change in the crystal structure either through diffusion of species or local rearrangement of atoms. This change of crystal structure leads to a macroscopic change of shape or volume or both and results in internal stresses during the transformation. In certain situations this stress field gives rise to cracks (tin, iron phosphate etc.) which continue to propagate as the transformation front traverses the material. In other materials the transformation modifies the stress field around cracks and effects crack growth behavior (zirconia, ferroelectrics). These observations serve as our motivation to study cracks in solids undergoing phase transformations. Understanding these effects will help in improving the mechanical reliability of the devices employing these materials.
In this thesis we present work on two problems concerning the interplay between cracks and phase transformations. First, we consider the directional growth of a set of parallel edge cracks due to a solid-solid transformation. We conclude from our analysis that phase transformations can lead to formation of parallel edge cracks when the transformation strain satisfies certain conditions and the resulting cracks grow all the way till their tips cross over the phase boundary. Moreover the cracks continue to grow as the phase boundary traverses into the interior of the body at a uniform spacing without any instabilities. There exists an optimal value for the spacing between the cracks. We ascertain these conclusion by performing numerical simulations using finite elements.
Second, we model the effect of the semiconducting nature and dopants on cracks in ferroelectric perovskite materials, particularly barium titanate. Traditional approaches to model fracture in these materials have treated them as insulators. In reality, they are wide bandgap semiconductors with oxygen vacancies and trace impurities acting as dopants. We incorporate the space charge arising due the semiconducting effect and dopant ionization in a phase field model for the ferroelectric. We derive the governing equations by invoking the dissipation inequality over a ferroelectric domain containing a crack. This approach also yields the driving force acting on the crack. Our phase field simulations of polarization domain evolution around a crack show the accumulation of electronic charge on the crack surface making it more permeable than was previously believed so, as seen in recent experiments. We also discuss the effect the space charge has on domain formation and the crack driving force.
Resumo:
The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.
Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.
The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.
Resumo:
Inspired by key experimental and analytical results regarding Shape Memory Alloys (SMAs), we propose a modelling framework to explore the interplay between martensitic phase transformations and plastic slip in polycrystalline materials, with an eye towards computational efficiency. The resulting framework uses a convexified potential for the internal energy density to capture the stored energy associated with transformation at the meso-scale, and introduces kinetic potentials to govern the evolution of transformation and plastic slip. The framework is novel in the way it treats plasticity on par with transformation.
We implement the framework in the setting of anti-plane shear, using a staggered implicit/explict update: we first use a Fast-Fourier Transform (FFT) solver based on an Augmented Lagrangian formulation to implicitly solve for the full-field displacements of a simulated polycrystal, then explicitly update the volume fraction of martensite and plastic slip using their respective stick-slip type kinetic laws. We observe that, even in this simple setting with an idealized material comprising four martensitic variants and four slip systems, the model recovers a rich variety of SMA type behaviors. We use this model to gain insight into the isothermal behavior of stress-stabilized martensite, looking at the effects of the relative plastic yield strength, the memory of deformation history under non-proportional loading, and several others.
We extend the framework to the generalized 3-D setting, for which the convexified potential is a lower bound on the actual internal energy, and show that the fully implicit discrete time formulation of the framework is governed by a variational principle for mechanical equilibrium. We further propose an extension of the method to finite deformations via an exponential mapping. We implement the generalized framework using an existing Optimal Transport Mesh-free (OTM) solver. We then model the $\alpha$--$\gamma$ and $\alpha$--$\varepsilon$ transformations in pure iron, with an initial attempt in the latter to account for twinning in the parent phase. We demonstrate the scalability of the framework to large scale computing by simulating Taylor impact experiments, observing nearly linear (ideal) speed-up through 256 MPI tasks. Finally, we present preliminary results of a simulated Split-Hopkinson Pressure Bar (SHPB) experiment using the $\alpha$--$\varepsilon$ model.
Resumo:
Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.
Resumo:
The concept of a "projection function" in a finite-dimensional real or complex normed linear space H (the function PM which carries every element into the closest element of a given subspace M) is set forth and examined.
If dim M = dim H - 1, then PM is linear. If PN is linear for all k-dimensional subspaces N, where 1 ≤ k < dim M, then PM is linear.
The projective bound Q, defined to be the supremum of the operator norm of PM for all subspaces, is in the range 1 ≤ Q < 2, and these limits are the best possible. For norms with Q = 1, PM is always linear, and a characterization of those norms is given.
If H also has an inner product (defined independently of the norm), so that a dual norm can be defined, then when PM is linear its adjoint PMH is the projection on (kernel PM)⊥ by the dual norm. The projective bounds of a norm and its dual are equal.
The notion of a pseudo-inverse F+ of a linear transformation F is extended to non-Euclidean norms. The distance from F to the set of linear transformations G of lower rank (in the sense of the operator norm ∥F - G∥) is c/∥F+∥, where c = 1 if the range of F fills its space, and 1 ≤ c < Q otherwise. The norms on both domain and range spaces have Q = 1 if and only if (F+)+ = F for every F. This condition is also sufficient to prove that we have (F+)H = (FH)+, where the latter pseudo-inverse is taken using dual norms.
In all results, the real and complex cases are handled in a completely parallel fashion.
Resumo:
The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel method to control transition location with boundary layer gas injection is investigated. An appropriate porous-metal injector section for the cone is designed and fabricated, and the efficacy of injected CO2 for delaying transition is gauged at various mass flow rates, and compared with both no injection and chemically inert argon injection cases. While CO2 injection seems to delay transition, and argon injection seems to promote it, the experimental results are inconclusive and matching computations do not predict a reduction in N factor from any CO2 injection condition computed.
Resumo:
As borne out by everyday social experience, social cognition is highly dependent on context, modulated by a host of factors that arise from the social environment in which we live. While streamlined laboratory research provides excellent experimental control, it can be limited to telling us about the capabilities of the brain under artificial conditions, rather than elucidating the processes that come into play in the real world. Consideration of the impact of ecologically valid contextual cues on social cognition will improve the generalizability of social neuroscience findings also to pathology, e.g., to psychiatric illnesses. To help bridge between laboratory research and social cognition as we experience it in the real world, this thesis investigates three themes: (1) increasing the naturalness of stimuli with richer contextual cues, (2) the potentially special contextual case of social cognition when two people interact directly, and (3) a third theme of experimental believability, which runs in parallel to the first two themes. Focusing on the first two themes, in work with two patient populations, we explore neural contributions to two topics in social cognition. First, we document a basic approach bias in rare patients with bilateral lesions of the amygdala. This finding is then related to the contextual factor of ambiguity, and further investigated together with other contextual cues in a sample of healthy individuals tested over the internet, finally yielding a hierarchical decision tree for social threat evaluation. Second, we demonstrate that neural processing of eye gaze in brain structures related to face, gaze, and social processing is differently modulated by the direct presence of another live person. This question is investigated using fMRI in people with autism and controls. Across a range of topics, we demonstrate that two themes of ecological validity — integration of naturalistic contextual cues, and social interaction — influence social cognition, that particular brain structures mediate this processing, and that it will be crucial to study interaction in order to understand disorders of social interaction such as autism.
Resumo:
I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.
II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.
Resumo:
A theory of the order-disorder transformation is developed in complete generality. The general theory is used to calculate long range order parameters, short range order parameters, energy, and phase diagrams for a face centered cubic binary alloy. The theoretical results are compared to the experimental determination of the copper-gold system, Values for the two adjustable parameters are obtained.
An explanation for the behavior of magnetic alloys is developed, Curie temperatures and magnetic moments of the first transition series elements and their alloys in both the ordered and disordered states are predicted. Experimental agreement is excellent in most cases. It is predicted that the state of order can effect the magnetic properties of an alloy to a considerable extent in alloys such as Ni3Mn. The values of the adjustable parameter used to fix the level of the Curie temperature, and the adjustable parameter that expresses the effect of ordering on the Curie temperature are obtained.
Resumo:
An experimental method combined with boundary layer theory is given for evaluating the added mass of a sphere moving along the axis of a circular cylinder filled with water or oil. The real fluid effects are separated from ideal fluid effects.
The experimental method consists essentially of a magnetic steel sphere propelled from rest by an electromagnetic coil in which the current is accurately controlled so that it only supplies force for a short time interval which is within the laminar flow regime of the fluid. The motion of the sphere as a function of time is recorded on single frame photographs using a short-arc multiple flash lamp with accurately controlled time intervals between flashes.
A concept of the effect of boundary layer displacement on the fluid flow around a sphere is introduced to evaluate the real fluid effects on the added mass. Surprisingly accurate agreement between experiment and theory is achieved.
Resumo:
We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.
This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.
Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.
Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.
Resumo:
Let F = Ǫ(ζ + ζ –1) be the maximal real subfield of the cyclotomic field Ǫ(ζ) where ζ is a primitive qth root of unity and q is an odd rational prime. The numbers u1=-1, uk=(ζk-ζ-k)/(ζ-ζ-1), k=2,…,p, p=(q-1)/2, are units in F and are called the cyclotomic units. In this thesis the sign distribution of the conjugates in F of the cyclotomic units is studied.
Let G(F/Ǫ) denote the Galoi's group of F over Ǫ, and let V denote the units in F. For each σϵ G(F/Ǫ) and μϵV define a mapping sgnσ: V→GF(2) by sgnσ(μ) = 1 iff σ(μ) ˂ 0 and sgnσ(μ) = 0 iff σ(μ) ˃ 0. Let {σ1, ... , σp} be a fixed ordering of G(F/Ǫ). The matrix Mq=(sgnσj(vi) ) , i, j = 1, ... , p is called the matrix of cyclotomic signatures. The rank of this matrix determines the sign distribution of the conjugates of the cyclotomic units. The matrix of cyclotomic signatures is associated with an ideal in the ring GF(2) [x] / (xp+ 1) in such a way that the rank of the matrix equals the GF(2)-dimension of the ideal. It is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root mod p, then Mq is non-singular. Also let p be arbitrary, let ℓ be a primitive root mod q and let L = {i | 0 ≤ i ≤ p-1, the least positive residue of defined by ℓi mod q is greater than p}. Let Hq(x) ϵ GF(2)[x] be defined by Hq(x) = g. c. d. ((Σ xi/I ϵ L) (x+1) + 1, xp + 1). It is shown that the rank of Mq equals the difference p - degree Hq(x).
Further results are obtained by using the reciprocity theorem of class field theory. The reciprocity maps for a certain abelian extension of F and for the infinite primes in F are associated with the signs of conjugates. The product formula for the reciprocity maps is used to associate the signs of conjugates with the reciprocity maps at the primes which lie above (2). The case when (2) is a prime in F is studied in detail. Let T denote the group of totally positive units in F. Let U be the group generated by the cyclotomic units. Assume that (2) is a prime in F and that p is odd. Let F(2) denote the completion of F at (2) and let V(2) denote the units in F(2). The following statements are shown to be equivalent. 1) The matrix of cyclotomic signatures is non-singular. 2) U∩T = U2. 3) U∩F2(2) = U2. 4) V(2)/ V(2)2 = ˂v1 V(2)2˃ ʘ…ʘ˂vp V(2)2˃ ʘ ˂3V(2)2˃.
The rank of Mq was computed for 5≤q≤929 and the results appear in tables. On the basis of these results and additional calculations the following conjecture is made: If q and p = (q -1)/ 2 are both primes, then Mq is non-singular.