19 resultados para RUTHENIUM SENSITIZERS
em CaltechTHESIS
Resumo:
The anionic tripod ligand NaLoMe (L_(oMe) - = [(η^5-C_5H_5)Co{P(O)(OCH_3)_2}_3]^-) reacts with RuO_4 in a biphasic reaction mixture of 1% H_2SO_4 and CCI_4 to afford [(L_(oMe) (HO)Ru^(IV) (µ-O)_2Ru ^(IV)(OH)(L_(oMe)] (1), which is treated with aqueous CF_3S0_3H to generate [(L_(oMe)(H_2O)Ru^(IV) (µ-O)_2R^(IV) (OH_2)(L_(oMe)][CF_3SO_3]_2 ([H_21][CF_3SO_3]_2). Addition of iodosobenzene to an acetonitrile solution of this salt yields [(L_(oMe)(O)Ru^v(µ-0)2Ru^v-(O)(_(LoMe)] (2). The dimer 1 can be reduced chemically or electrochemically to the Ru^(III)- Ru^(III) dimers [(L_(oMe)(H_20)Ru^(III) (µ-OH)_2Ru^(III) (OH_2)(L_(oMe)) ]^2+ and [(L_(oMe)) ^(III) (µ-0Hh(µ-0H2)Ru^(III) (L_(oMe)]^2+ which interconvert in aqueous media. Two electron processes dominate both the bulk chemistry and the electrochemistry of 1. Among these processes are the quasi-reversible Ru^(IV) - Ru^(IV)/Ru^(III)- Ru^(III) and Ru^(III)- Ru^(III)/ Ru^(II)- Ru^(II) reductions and a largely irreversible Ru^(V) - Ru^(V)/ Ru^(IV) - Ru^(IV)/oxidation. The dioxo dimer 2 oxidizes alcohols and aldehydes in organic media to afford 1 and the corresponding aldehydes and acids. Analogously, the Ru^(V) - Ru^(V)/ Ru^(IV)- Ru^(IV) redox wave mediates the electrooxidation of alcohols and aldehydes in aqueous buffer. In this system, substrates can be oxidized completely to CO_2. The kinetic behavior of these oxidations was examined by UV-vis and chronoamperometry, respectively, and the chemistry is typical of metal-oxo complexes, indicating that electronic coupling between two metal centers does not dramatically affect the metal-oxo chemistry. Dimer [H_21]^(2+) also reacts with alcohols, aldehydes, and triphenylphosphine in CH_3CN to afford Ru^(III)- Ru^(III) products including [(L_(oMe))CH_3CN) Ru^(III) (µ-OH)_2 Ru^(III) (NCCH_3)( L_(oMe))][CF_3SO_3]2 (characterized by X-ray crystallography) and the corresponding organic products. Reaction of 1 with formaldehyde in aqueous buffer quantitatively affords the triply bridged dimer [(L_(oMe)Ru^(III) (µ-OH)2- (µ-HCOO) Ru^(III) (L_(oMe)][CF_3SO_3] (characterized by X-ray crystallography). This reaction evidently proceeds by two parallel inner-sphere pathways, one of which is autocatalytic. Neither pathway exhibits a primary isotope effect suggesting the rate determining process could be the formation of an intermediate, perhaps a Ru^(IV) - Ru^(IV) formate adduct. The Ru^(III)- Ru^(III)formate adduct is easily oxidized to the Ru^(IV) - Ru^(IV) analog [(L_(oMe)Ru^(IV)(µ-OH)_2-(µ-HCOO) Ru^(IV) (L_(oMe)][CF_3SO_3], which, after isolation, reacts slowly with aqueous formaldehyde to generate free formate and the Ru^(III)- Ru^(III) formate adduct. These dimers function as catalysts for the electrooxidation of formaldehyde at low anodic potentials (+0.0 V versus SCE in aqueous buffer, pH 8.5) and enhance the activity of Nafion treated palladium/carbon heterogeneous fuel cell catalysts.
Resumo:
Quantitative investigations of the mechanisms and the kinetics of the surface-catalyzed activation of C-H, N-H, C-C, and C-N bonds on the close-packed surfaces of Ir(111) and Ru(001) have been performed. The interaction of CH_3NH_2 with Ru(001) was investigated in ultrahigh vacuum with the techniques of high-resolution electron energy loss spectroscopy and thermal desorption mass spectrometry. Activation of the central C-N bond is observed, but it is less favored than the competing channel of complete dehydrogenation, by a ratio between 2:1 to 3:1. The decomposition mechanism has been characterized with several surface intermediates and gas-phase products identified. A pronounced preference for the activation of C-H over N-H and C-N bonds has been established. Additionally, the kinetics of the initial dissociation of short chain alkanes on Ir(111) has been examined, and the rate parameters of the activation of C-C bonds and primary, secondary, and tertiary C-H bonds have been determined. The formation of primary alkyl products is favored, over most of the experimental temperature range, despite the thermodynamic preference for the activation of individual secondary and tertiary C-H bonds in comparison to individual primary C-H bonds. At higher surface temperatures, the activation of C-C bonds occurs at competitive rates to the C-H reaction channel. The measured deuterium kinetic isotope effect implicates substantial deformation of the terminal methyl group in the transition state of C-C bond cleavage. Finally, the surface structure sensitivity of C-H bond cleavage has been quantified for smooth (111) and corrugated (110) surfaces of iridium and platinum, as well as for step edge defect sites on Ir(111).
Resumo:
Redox-active ruthenium complexes have been covalently attached to the surface of a series of natural, semisynthetic and recombinant cytochromes c. The protein derivatives were characterized by a variety of spectroscopic techniques. Distant Fe^(2+) - Ru^(3+) electronic couplings were extracted from intramolecular electron-transfer rates in Ru(bpy)_2(im)HisX (where X= 33, 39, 62, and 72) derivatives of cyt c. The couplings increase according to 62 (0.0060) < 72 (0.057) < 33 (0.097) < 39 (0.11 cm^(-1)); however, this order is incongruent with histidine to heme edge-edge distances [62 (14.8) > 39 (12.3) > 33 (11.1) > =72 (8.4 Å)]. These results suggest the chemical nature of the intervening medium needs to be considered for a more precise evaluation of couplings. The rates (and couplings) correlate with the lengths of a-tunneling pathways comprised of covalent bonds, hydrogen bonds and through-space jumps from the histidines to the heme group. Space jumps greatly decrease couplings: one from Pro71 to Met80 extends the σ-tunneling length of the His72 pathway by roughly 10 covalent bond units. Experimental couplings also correlate well with those calculated using extended Hiickel theory to evaluate the contribution of the intervening protein medium.
Two horse heart cyt c variants incorporating the unnatural amino acids (S)-2- amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) and (S)-2-amino-3-(2,2'-bipyrid-4-yl)propanoic acid ( 4Bpa) at position 72 have been prepared using semisynthetic protocols. Negligible perturbation of the protein structure results from this introduction of unnatural amino acids. Redox-active Ru(2,2'-bipyridine)_2^(2+) binds to 4Bpa72 cyt c but not to the 6Bpa protein. Enhanced ET rates were observed in the Ru(bpy)_2^(2+)-modified 4Bpa72 cyt c relative to the analogous His72 derivative. The rapid (< 60 nanosecond) photogeneration of ferrous Ru-modified 4Bpa72 cyt c in the conformationally altered alkaline state demonstrates that laser-induced ET can be employed to study submicrosecond protein-folding events.
Resumo:
The interactions of N2, formic acid and acetone on the Ru(001) surface are studied using thermal desorption mass spectrometry (TDMS), electron energy loss spectroscopy (EELS), and computer modeling.
Low energy electron diffraction (LEED), EELS and TDMS were used to study chemisorption of N2 on Ru(001). Adsorption at 75 K produces two desorption states. Adsorption at 95 K fills only the higher energy desorption state and produces a (√3 x √3)R30° LEED pattern. EEL spectra indicate both desorption states are populated by N2 molecules bonded "on-top" of Ru atoms.
Monte Carlo simulation results are presented on Ru(001) using a kinetic lattice gas model with precursor mediated adsorption, desorption and migration. The model gives good agreement with experimental data. The island growth rate was computed using the same model and is well fit by R(t)m - R(t0)m = At, with m approximately 8. The island size was determined from the width of the superlattice diffraction feature.
The techniques, algorithms and computer programs used for simulations are documented. Coordinate schemes for indexing sites on a 2-D hexagonal lattice, programs for simulation of adsorption and desorption, techniques for analysis of ordering, and computer graphics routines are discussed.
The adsorption of formic acid on Ru(001) has been studied by EELS and TDMS. Large exposures produce a molecular multilayer species. A monodentate formate, bidentate formate, and a hydroxyl species are stable intermediates in formic acid decomposition. The monodentate formate species is converted to the bidentate species by heating. Formic acid decomposition products are CO2, CO, H2, H2O and oxygen adatoms. The ratio of desorbed CO with respect to CO2 increases both with slower heating rates and with lower coverages.
The existence of two different forms of adsorbed acetone, side-on, bonded through the oxygen and acyl carbon, and end-on, bonded through the oxygen, have been verified by EELS. On Pt(111), only the end-on species is observed. On dean Ru(001) and p(2 x 2)O precovered Ru(001), both forms coexist. The side-on species is dominant on clean Ru(001), while O stabilizes the end-on form. The end-on form desorbs molecularly. Bonding geometry stability is explained by surface Lewis acidity and by comparison to organometallic coordination complexes.
Resumo:
Redox-active probes are designed and prepared for use in DNA-mediated electron transfer studies. These probes consist of ruthenium(II) complexes bound to nucleosides that possess metal-binding ligands. Low- and high-potential oxidants are synthesized from these modified nucleosides and display reversible one-electron electrochemical behavior. The ruthenium-modified nucleosides exhibit distinct charge-transfer transitions in the visible region that resemble those of appropriate model complexes. Resonance Raman and time-resolved emission spectroscopy are used to characterize the nature of these transitions.
The site-specific incorporation of these redox-active probes into oligonucleotides is explored using post-synthetic modification and solid-phase synthetic methods. The preparation of the metal-binding nucleosides, their incorporation into oligonucleotides, and characterization of the resulting oligonucleotides is described. Because the insertion of these probes into modified oligonucleotides using post-synthetic modification is unsuccessful, solid-phase synthetic methods are explored. These efforts lead to the first report of 3'-metallated oligonucleotides prepared completely by automated solid-phase synthesis. Preliminary efforts to prepare a bis-metallated oligonucleotide by automated synthesis are described.
The electrochemical, absorption, and emissive features of the ruthenium-modified oligonucleotides are unchanged from those of the precursor metallonucleoside. The absence of any change in these properties upon incorporation into oligonucleotides and subsequent hybridization suggests that the incorporated ruthenium(II) complex is a valuable probe for DNA-mediated electron transfer studies.
Resumo:
Publications about olefin metathesis will generally discuss how the discovery and development of well-defined catalysts to carry out this unique transformation have revolutionized many fields, from natural product and materials chemistry, to green chemistry and biology. However, until recently, an entire manifestation of this methodology had been inaccessible. Except for a few select examples, metathesis catalysts favor the thermodynamic trans- or E-olefin products in cross metathesis (CM), macrocyclic ring closing metathesis (mRCM), ring opening metathesis polymerization (ROMP), and many other types of reactions. Judicious choice of substrates had allowed for the direct synthesis of cis- or Z-olefins or species that could be converted upon further reaction, however the catalyst controlled synthesis of Z-olefins was not possible until very recently.
Research into the structure and stability of metallacyclobutane intermediates has led to the proposal of models to impart Z-selectivity in metathesis reactions. Having the ability to influence the orientation of metallacyclobutane substituents to cause productive formation of Z- double bonds using steric and electronic effects was highly desired. The first successful realization of this concept was by Schrock and Hoveyda et al. who synthesized monoaryloxide pyrolidine (MAP) complexes of tungsten and molybdenum that promoted Z-selective CM. The Z-selectivity of these catalysts was attributed to the difference in the size of the two axial ligands. This size difference influences the orientation of the substituents on the forming/incipient metallacyclobutane intermediate to a cis-geometry and leads to productive formation of Z-olefins. These catalysts have shown great utility in the synthesis of complicated natural product precursors and stereoregular polymers. More recently, ruthenium catalysts capable of promoting Z-selective metathesis have been reported by our group and others. This thesis will discuss the development of ruthenium-based NHC chelated Z-selective catalysts, studies probing their unique metathesis mechanism, and synthetic applications that have been investigated thus far.
Chapter 1 will focus on studies into the stability of NHC chelated complexes and the synthesis of new and improved stable chelating architectures. Chapter 2 will discuss applications of the highly active and Z-selective developed in Chapter 1, including the formation of lepidopteran female sex pheromones using olefin cross metathesis and highly Z- and highly E-macrocycles using macrocyclic ring closing metathesis and Z-selective ethenolysis. Chapter 3 will explore studies into the unique mechanism of olefin metathesis reactions catalyzed by these NHC chelated, highly Z-selective catalysts, explaining observed trends by investigating the stability of relevant, substituted metallacyclobutane intermediates.
Resumo:
The olefin metathesis reaction has found many applications in polymer synthesis and more recently in organic synthesis. The use of single component late metal olefin metathesis catalysts has expanded the scope of the reaction to many new applications and has allowed for detailed study of the catalytic species.
The metathesis of terminal olefins of different steric bulk, different geometry as well as electronically different para-substituted styrenes was studied with the ruthenium based metathesis initiators, trans-(PCy3)2Cl2Ru=CHR, of different carbene substituents. Increasing olefin bulk was found to slow the rate of reaction and trans internal olefins were found to be slower to react than cis internal olefins. The kinetic product of a11 reactions was found to be the alkylidene, rather than the methylidene, suggesting the intermediacy of a 2,4-metallacycle. The observed effects were used to explain the mechanism of ring opening cross metathesis and acyclic diene metathesis polymerization. No linear electronic effects were observed.
In studying the different carbene ligands, a series of ester-carbene complexes was synthesized. These complexes were found to be highly active for the metathesis of olefinic substrates, including acrylates and trisubstituted olefins. In addition, the estercarbene moiety is thermodynamically high in energy. As a result, these complexes react to ring-open cyclohexene by metathesis to alleviate the thermodynamic strain of the ester-carbene ligand. However, ester-carbene complexes were found to be thermolytically unstable in solution.
Thermolytic decomposition pathways were studied for several ruthenium-carbene based olefin metathesis catalysts. Substituted carbenes were found to decompose through bimolecular pathways while the unsubstituted carbene (the methylidene) was found to decompose unimolecularly. The stability of several derivatives of the bis-phosphine ruthenium based catalysts was studied for its implications to ring-closing metathesis. The reasons for the activity and stability of the different ruthenium-based catalysts is discussed.
The difference in catalyst activity and initiation is discussed for the bis-phosphine based and mixed N-heterocyclic carbene/phosphine based ruthenium olefin metathesis catalysts. The mixed ligand catalysts initiate far slower than the bis-phosphine catalysts but are far more metathesis active. A scheme is proposed to explain the difference in reactivity between the two types of catalysts.
Resumo:
The behavior of the photosensitized cis-trans isomerization of 2,3-diphenylbutene-2 was studied as a function of sensitizer energy by previously established methods. In addition, certain sensitizers for which parameters other than energy transfer are operative in inducting isomerizations, were studied in more detail. Sensitization of various stilbenes and substituted stilbenes by triphenylene is discussed in terms of excited state complex formation with stilbene. Sensitization by quinones, halogen-containing aromatics and 1,2-diketones is discussed in terms of attack by photolytically produced free radicals, either by addition to and elimination from the double bond, or in the cases of 1,2-diphenylpropene and 2,3-diphenylbutene-2, by hydrogen abstraction from one of the methyl groups and reversible abstraction by the allylic radical to produce cis-trans isomerized substrate and the structurally isomerized products, 2,3-diphenylpropene and 2,3-diphenylbutene-1.
Resumo:
Part I.
The stoichiometry and kinetics of the reaction between Co(CN5H3- and HgX2 (X = CN, OH) have been investigated. The products of the reaction are two new complexes, [(NC)5Co-HgX]3- and [(NC)5Co-Hg-Co(CN)5]6-, whose spectra are reported. The kinetic measurements produced a value for the forward rate constant of the reaction Co(CN)5H3- + OH- k1/k-1 Co(CN)54- +H2O, k1 = (9.7 ± 0.8) x 10-2 M-1 sec-1 at 24°C, and an equilibrium constant for the reaction K = 10-6 M-1.
Part II.
Unusually large and sharp "adsorption waves" appear in cyclic voltammograms of Co(CN)53- and several cobalt(III) pentacyano complexes at stationary mercury electrodes. The nature of the adsorbed species and the reasons for the absence of the adsorption waves in polarograms taken with a d.m.e. have been examined. The data are compatible with the adsorption, in all cases, of a coordinatively unsaturated cobalt(II) complex, Co(CN)42-, by means of a cobalt-mercury bond. When the resulting adsorbed complex is reduced, a series of subsequent chemical and electrode reactions is initiated in which three faradays of charge are consumed for each mole of adsorbed complex. The adsorption of the anionic complex strongly retards the reduction of other negatively charged complexes.
Part III.
A number of formal redox potentials for RuIII (NH3)5L + e = RuII (NH3)5L and RuIII(NH3)4L2 + e = RuII (NH3)4L2 (where L is various ligands) has been measured by cyclic voltammetry, potentiometry, and polarography and are discussed in terms of the properties of the ligands, such as π-accepting capability. Reduction of coordinated pyrazine in the complexes, Ru(NH3)5 Pz2+, cis- and trans-Ru(NH3)4Pz22+, on a mercury electrode has been observed. The behavior of this reduction in various acidity of the solution as well as the reoxidation of the reduction products are discussed.
Resumo:
The preparation and direct observation of triplet 2,4-dimethylene-1,3- cyclobutanediyl (1), the non-Kekule isomer of benzene, is described. The biradical was generated by photolysis of 5,6-dimethylene-2,3- diazabicyclo[2.1.1]hex-2-ene (2) (which was synthesized in several steps from benzvalene) under cryogenic, matrix-isolation conditions. Biradical 1 was characterized by EPR spectroscopy (│D/hc│ =0.0204 cm^(-1), │E/hc│ =0.0028 cm^(-1)) and found to have a triplet ground state. The Δm_s= 2 transition displays hyperfine splitting attributed to a 7.3-G coupling to the ring methine and a 5.9-G coupling to the exocyclic methylene protons. Several experiments, including application of the magnetophotoselection (mps) technique in the generation of biradical 1, have allowed a determination of the zero-field triplet sublevels as x = -0.0040, y = +0.0136, and z = -0.0096 cm^(-1), where x and y are respectively the long and short in-plane axes and z the out-of-plane axis of 1.
Triplet 1 is yellow-orange and displays highly structured absorption (λ_(max)= 506 nm) and fluorescence (λ_(max) = 510 nm) spectra, with vibronic spacings of 1520 and 620 cm^(-1) for absorption and 1570 and 620 cm^(-1) for emission. The spectra were unequivocally assigned to triplet 1 by the use of a novel technique that takes advantage of the biradical's photolability. The absorption є = 7200 M^(-1) cm^(-1) and f = 0.022, establishing that the transition is spin-allowed. Further use of the mps technique has demonstrated that the transition is x-polarized, and the excited state 1s therefore of B_(1g) symmetry, in accord with theoretical predictions.
Thermolysis or direct photolysis of diazene 2 in fluid solution produces 2,4- dimethylenebicyclo[l.l.0]butane (3), whose ^(l)H NMR spectrum (-80°C, CD_(2)Cl_(2)) consists of singlets at δ 4.22 and 3.18 in a 2:1 ratio. Compound 3 is thermally unstable and dimerizes with second-order kinetics between -80 and -25°C (∆H^(‡) = 6.8 kcal mol^(-1), (∆s^(‡) = -28 eu) by a mechanism involving direct combination of two molecules of 3 in the rate-determining step. This singlet-manifold reaction ultimately produces a mixture of two dimers, 3,8,9- trimethylenetricyclo[5.1.1.0^(2,5)]non-4-ene (75) and trans-3,10-dimethylenetricyclo[6.2.0.0^(2,5)]deca-4,8-diene (76t), with the former predominating. In contrast, triplet-sensitized photolysis of 2, which leads to triplet 1, provides, in addition to 75 and 76t, a substantial amount of trans-5,10- dimethylenetricyclo[6.2.0.0^(3,6)]deca-3,8-diene (77t) and small amounts of two unidentified dimers.
In addition, triplet biradical 1 ring-closes to 3 in rigid media both thermally (77-140 K) and photochemically. In solution 3 forms triplet 1 upon energy transfer from sensitizers having relatively low triplet energies. The implications of the thermal chemistry for the energy surfaces of the system are discussed.
Resumo:
This work describes the design and synthesis of a true, heterogeneous, asymmetric catalyst. The catalyst consists of a thin film that resides on a high-surface- area hydrophilic solid and is composed of a chiral, hydrophilic organometallic complex dissolved in ethylene glycol. Reactions of prochiral organic reactants take place predominantly at the ethylene glycol-bulk organic interface.
The synthesis of this new heterogeneous catalyst is accomplished in a series of designed steps. A novel, water-soluble, tetrasulfonated 2,2'-bis (diphenylphosphino)-1,1'-binaphthyl (BINAP-4S0_3Na) is synthesized by direct sulfonation of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP). The rhodium (I) complex of BINAP-4SO_3Na is prepared and is shown to be the first homogeneous catalyst to perform asymmetric reductions of prochiral 2-acetamidoacrylic acids in neat water with enantioselectivities as high as those obtained in non-aqueous solvents. The ruthenium (II) complex, [Ru(BINAP-4SO_3Na)(benzene)Cl]Cl is also synthesized and exhibits a broader substrate specificity as well as higher enantioselectivities for the homogeneous asymmetric reduction of prochiral 2-acylamino acid precursors in water. Aquation of the ruthenium-chloro bond in water is found to be detrimental to the enantioselectivity with some substrates. Replacement of water by ethylene glycol results in the same high e.e's as those found in neat methanol. The ruthenium complex is impregnated onto a controlled pore-size glass CPG-240 by the incipient wetness technique. Anhydrous ethylene glycol is used as the immobilizing agent in this heterogeneous catalyst, and a non-polar 1:1 mixture of chloroform and cyclohexane is employed as the organic phase.
Asymmetric reduction of 2-(6'-methoxy-2'-naphthyl)acrylic acid to the non-steroidal anti-inflammatory agent, naproxen, is accomplished with this heterogeneous catalyst at a third of the rate observed in homogeneous solution with an e.e. of 96% at a reaction temperature of 3°C and 1,400 psig of hydrogen. No leaching of the ruthenium complex into the bulk organic phase is found at a detection limit of 32 ppb. Recycling of the catalyst is possible without any loss in enantioselectivity. Long-term stability of this new heterogeneous catalyst is proven by a self-assembly test. That is, under the reaction conditions, the individual components of the present catalytic system self-assemble into the supported-catalyst configuration.
The strategies outlined here for the design and synthesis of this new heterogeneous catalyst are general, and can hopefully be applied to the development of other heterogeneous, asymmetric catalysts.
Resumo:
The presented doctoral research utilizes time-resolved spectroscopy to characterize protein dynamics and folding mechanisms. We resolve millisecond-timescale folding by coupling time-resolved fluorescence energy transfer (trFRET) to a continuous flow microfluidic mixer to obtain intramolecular distance distributions throughout the folding process. We have elucidated the folding mechanisms of two cytochromes---one that exhibits two-state folding (cytochrome
We have also investigated intrachain contact dynamics in unfolded cytochrome
In addition, we have explored the pathway dependence of electron tunneling rates between metal sites in proteins. Our research group has converted cytochrome
Resumo:
Past workers in this group as well as in others have made considerable progress in the understanding and development of the ring-opening metathesis polymerization (ROMP) technique. Through these efforts, ROMP chemistry has become something of an organometallic success story. Extensive work was devoted to trying to identify the catalytically active species in classical reaction mixtures of early metal halides and alkyl aluminum compounds. Through this work, a mechanism involving the interconversion of metal carbenes and metallacyclobutanes was proposed. This preliminary work finally led to the isolation and characterization of stable metal carbene and metallacyclobutane complexes. As anticipated, these well-characterized complexes were shown to be active catalysts. In a select number of cases, these catalysts have been shown to catalyze the living polymerization of strained rings such as norbornene. The synthetic control offered by these living systems places them in a unique category of metal catalyzed reactions. To take full advantage of these new catalysts, two approaches should be explored. The first takes advantage of the unusual fact that all of the unsaturation present in the monomer is conserved in the polymer product. This makes ROMP techniques ideal for the synthesis of highly unsaturated, and fully conjugated polymers, which find uses in a variety of applications. This area is currently under intense investigation. The second aspect, which should lend itself to fruitful investigations, is expanding the utility of these catalysts through the living polymerization of monomers containing interesting functional groups. Polymer properties can be dramatically altered by the incorporation of functional groups. It is this latter aspect which will be addressed in this work.
After a general introduction to both the ring-opening metathesis reaction (Chapter 1) and the polymerization of fuctionalized monomers by transition metal catalysts (Chapter 2), the limits of the existing living ROMP catalysts with functionalized monomers are examined in Chapter 3. Because of the stringent limitations of these early metal catalysts, efforts were focused on catalysts based on ruthenium complexes. Although not living, and displaying unusually long induction periods, these catalysts show high promise for future investigations directed at the development of catalysts for the living polymerization of functionalized monomers. In an attempt to develop useful catalysts based on these ruthenium complexes, efforts to increase their initiation rates are presented in Chapter 4. This work eventually led to the discovery that these catalysts are highly active in aqueous solution, providing the opportunity to develop aqueous emulsion ROMP systems. Recycling the aqueous catalysts led to the discovery that the ruthenium complexes become more activated with use. Investigations of these recycled solutions uncovered new ruthenium-olefin complexes, which are implicated in the activation process. Although our original goal of developing living ROMP catalysts for the polymerization of fuctionalized monomers is yet to be realized, it is hoped that this work provides a foundation from which future investigations can be launched.
In the last chapter, the ionophoric properties of the poly(7-oxanobornene) materials is briefly discussed. Their limited use as acyclic host polymers led to investigations into the fabrication of ion-permeable membranes fashioned from these materials.
Resumo:
A semisynthetic binuclear metalloprotein has been prepared by appending the pentaammineruthenium moiety to histidine 39 of the cytochrome c from the yeast Candida krusei. The site of ruthenium binding was identified by peptide mapping. Spectroscopic and electrochemical properties of the derivative indicate the protein conformation is unperturbed by the modification. A preliminary (minimum) rate constant of 170s^(-1) has been determined for the intramolecular electron transfer from ruthenium(II) to iron(III), which occurs over a distance of at least 13Å (barring major conformational changes). Electrochemical studies indicate that this reaction should proceed with a driving force of ~170mV. The rate constant is an order of magnitude faster than that observed in horse heart cytochrome c for intramolecular electron transfer from pentaammineruthenium(II)(histidine 33) to iron(III) (over a similar distance, and with a similar driving force), suggesting a medium or orientation effect makes the Candida intramolecular electron transfer more favorable.
Resumo:
With the advent of well-defined ruthenium olefin metathesis catalysts that are highly active and stable to a variety of functional groups, the synthesis of complex organic molecules and polymers is now possible; this is reviewed in Chapter 1. The majority of the rest of this thesis describes the application of these catalysts towards the synthesis of novel polymers that may be useful in biological applications and investigations into their efficacy.
A method was developed to produce polyethers by metathesis, and this is described in Chapters 2 and 3. An unsaturated 12-crown-4 analog was made by template- directed ring-closing metathesis (RCM) and utilized as a monomer for the synthesis of unsaturated polyethers by ring-opening metathesis polymerization (ROMP). The yields were high and a range of molecular weights was accessible. In a similar manner, substituted polyethers with various backbones were synthesized: polymers with benzo groups along the backbone and various concentrations of amino acids were prepared. The results from in vitro toxicity tests of the unsubstituted polyethers are considered.
The conditions necessary to synthesize polynorbornenes with pendent bioactive peptides were explored as illustrated in Chapter 4. First, the polymerization of various norbornenyl monomers substituted with glycine, alanine or penta(ethylene glycol) is described. Then, the syntheses of polymers substituted with peptides GRGD and SRN, components of a cell binding domain of fibronectin, using newly developed ruthenium initiators are discussed.
In Chapter 5, the syntheses of homopolymers and a copolymer containing GRGDS and PHSRN, the more active forms of the peptides, are described. The ability of the polymers to inhibit human dermal fibroblast cell adhesion to fibronectin was assayed using an in vitro competitive inhibition assay, and the results are discussed. It was discovered that the copoymer substituted with both GRGDS and PHSR peptides was more active than both the GRGDS-containing homopolymer and the GRGDS free peptide.
Historically, one of the drawbacks to using metathesis is the removal of the residual ruthenium at the completion of the reaction. Chapter 6 describes a method where the water soluble tris(hydroxymethyl)phosphine is utilized to facilitate the removal of residual ruthenium from RCM reaction products.