7 resultados para REGULARITY LEMMA

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In three essays we examine user-generated product ratings with aggregation. While recommendation systems have been studied extensively, this simple type of recommendation system has been neglected, despite its prevalence in the field. We develop a novel theoretical model of user-generated ratings. This model improves upon previous work in three ways: it considers rational agents and allows them to abstain from rating when rating is costly; it incorporates rating aggregation (such as averaging ratings); and it considers the effect on rating strategies of multiple simultaneous raters. In the first essay we provide a partial characterization of equilibrium behavior. In the second essay we test this theoretical model in laboratory, and in the third we apply established behavioral models to the data generated in the lab. This study provides clues to the prevalence of extreme-valued ratings in field implementations. We show theoretically that in equilibrium, ratings distributions do not represent the value distributions of sincere ratings. Indeed, we show that if rating strategies follow a set of regularity conditions, then in equilibrium the rate at which players participate is increasing in the extremity of agents' valuations of the product. This theoretical prediction is realized in the lab. We also find that human subjects show a disproportionate predilection for sincere rating, and that when they do send insincere ratings, they are almost always in the direction of exaggeration. Both sincere and exaggerated ratings occur with great frequency despite the fact that such rating strategies are not in subjects' best interest. We therefore apply the behavioral concepts of quantal response equilibrium (QRE) and cursed equilibrium (CE) to the experimental data. Together, these theories explain the data significantly better than does a theory of rational, Bayesian behavior -- accurately predicting key comparative statics. However, the theories fail to predict the high rates of sincerity, and it is clear that a better theory is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation reformulates and streamlines the core tools of robustness analysis for linear time invariant systems using now-standard methods in convex optimization. In particular, robust performance analysis can be formulated as a primal convex optimization in the form of a semidefinite program using a semidefinite representation of a set of Gramians. The same approach with semidefinite programming duality is applied to develop a linear matrix inequality test for well-connectedness analysis, and many existing results such as the Kalman-Yakubovich--Popov lemma and various scaled small gain tests are derived in an elegant fashion. More importantly, unlike the classical approach, a decision variable in this novel optimization framework contains all inner products of signals in a system, and an algorithm for constructing an input and state pair of a system corresponding to the optimal solution of robustness optimization is presented based on this information. This insight may open up new research directions, and as one such example, this dissertation proposes a semidefinite programming relaxation of a cardinality constrained variant of the H ∞ norm, which we term sparse H ∞ analysis, where an adversarial disturbance can use only a limited number of channels. Finally, sparse H ∞ analysis is applied to the linearized swing dynamics in order to detect potential vulnerable spots in power networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1964 A. W. Goldie [1] posed the problem of determining all rings with identity and minimal condition on left ideals which are faithfully represented on the right side of their left socle. Goldie showed that such a ring which is indecomposable and in which the left and right principal indecomposable ideals have, respectively, unique left and unique right composition series is a complete blocked triangular matrix ring over a skewfield. The general problem suggested above is very difficult. We obtain results under certain natural restrictions which are much weaker than the restrictive assumptions made by Goldie.

We characterize those rings in which the principal indecomposable left ideals each contain a unique minimal left ideal (Theorem (4.2)). It is sufficient to handle indecomposable rings (Lemma (1.4)). Such a ring is also a blocked triangular matrix ring. There exist r positive integers K1,..., Kr such that the i,jth block of a typical matrix is a Ki x Kj matrix with arbitrary entries in a subgroup Dij of the additive group of a fixed skewfield D. Each Dii is a sub-skewfield of D and Dri = D for all i. Conversely, every matrix ring which has this form is indecomposable, faithfully represented on the right side of its left socle, and possesses the property that every principal indecomposable left ideal contains a unique minimal left ideal.

The principal indecomposable left ideals may have unique composition series even though the ring does not have minimal condition on right ideals. We characterize this situation by defining a partial ordering ρ on {i, 2,...,r} where we set iρj if Dij ≠ 0. Every principal indecomposable left ideal has a unique composition series if and only if the diagram of ρ is an inverted tree and every Dij is a one-dimensional left vector space over Dii (Theorem (5.4)).

We show (Theorem (2.2)) that every ring A of the type we are studying is a unique subdirect sum of less complex rings A1,...,As of the same type. Namely, each Ai has only one isomorphism class of minimal left ideals and the minimal left ideals of different Ai are non-isomorphic as left A-modules. We give (Theorem (2.1)) necessary and sufficient conditions for a ring which is a subdirect sum of rings Ai having these properties to be faithfully represented on the right side of its left socle. We show ((4.F), p. 42) that up to technical trivia the rings Ai are matrix rings of the form

[...]. Each Qj comes from the faithful irreducible matrix representation of a certain skewfield over a fixed skewfield D. The bottom row is filled in by arbitrary elements of D.

In Part V we construct an interesting class of rings faithfully represented on their left socle from a given partial ordering on a finite set, given skewfields, and given additive groups. This class of rings contains the ones in which every principal indecomposable left ideal has a unique minimal left ideal. We identify the uniquely determined subdirect summands mentioned above in terms of the given partial ordering (Proposition (5.2)). We conjecture that this technique serves to construct all the rings which are a unique subdirect sum of rings each having the property that every principal-indecomposable left ideal contains a unique minimal left ideal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sufficient stability criteria for classes of parametrically excited differential equations are developed and applied to example problems of a dynamical nature.

Stability requirements are presented in terms of 1) the modulus of the amplitude of the parametric terms, 2) the modulus of the integral of the parametric terms and 3) the modulus of the derivative of the parametric terms.

The methods employed to show stability are Liapunov’s Direct Method and the Gronwall Lemma. The type of stability is generally referred to as asymptotic stability in the sense of Liapunov.

The results indicate that if the equation of the system with the parametric terms set equal to zero exhibits stability and possesses bounded operators, then the system will be stable under sufficiently small modulus of the parametric terms or sufficiently small modulus of the integral of the parametric terms (high frequency). On the other hand, if the equation of the system exhibits individual stability for all values that the parameter assumes in the time interval, then the actual system will be stable under sufficiently small modulus of the derivative of the parametric terms (slowly varying).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation is concerned with various fundamental aspects of the linearized dynamical theory for mechanically homogeneous and isotropic elastic solids. First, the uniqueness and reciprocal theorems of dynamic elasticity are extended to unbounded domains with the aid of a generalized energy identity and a lemma on the prolonged quiescence of the far field, which are established for this purpose. Next, the basic singular solutions of elastodynamics are studied and used to generate systematically Love's integral identity for the displacement field, as well as an associated identity for the field of stress. These results, in conjunction with suitably defined Green's functions, are applied to the construction of integral representations for the solution of the first and second boundary-initial value problem. Finally, a uniqueness theorem for dynamic concentrated-load problems is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation deals with certain generalizations of the classical uniqueness theorem for the second boundary-initial value problem in the linearized dynamical theory of not necessarily homogeneous nor isotropic elastic solids. First, the regularity assumptions underlying the foregoing theorem are relaxed by admitting stress fields with suitably restricted finite jump discontinuities. Such singularities are familiar from known solutions to dynamical elasticity problems involving discontinuous surface tractions or non-matching boundary and initial conditions. The proof of the appropriate uniqueness theorem given here rests on a generalization of the usual energy identity to the class of singular elastodynamic fields under consideration.

Following this extension of the conventional uniqueness theorem, we turn to a further relaxation of the customary smoothness hypotheses and allow the displacement field to be differentiable merely in a generalized sense, thereby admitting stress fields with square-integrable unbounded local singularities, such as those encountered in the presence of focusing of elastic waves. A statement of the traction problem applicable in these pathological circumstances necessitates the introduction of "weak solutions'' to the field equations that are accompanied by correspondingly weakened boundary and initial conditions. A uniqueness theorem pertaining to this weak formulation is then proved through an adaptation of an argument used by O. Ladyzhenskaya in connection with the first boundary-initial value problem for a second-order hyperbolic equation in a single dependent variable. Moreover, the second uniqueness theorem thus obtained contains, as a special case, a slight modification of the previously established uniqueness theorem covering solutions that exhibit only finite stress-discontinuities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constitutive modeling in granular materials has historically been based on macroscopic experimental observations that, while being usually effective at predicting the bulk behavior of these type of materials, suffer important limitations when it comes to understanding the physics behind grain-to-grain interactions that induce the material to macroscopically behave in a given way when subjected to certain boundary conditions.

The advent of the discrete element method (DEM) in the late 1970s helped scientists and engineers to gain a deeper insight into some of the most fundamental mechanisms furnishing the grain scale. However, one of the most critical limitations of classical DEM schemes has been their inability to account for complex grain morphologies. Instead, simplified geometries such as discs, spheres, and polyhedra have typically been used. Fortunately, in the last fifteen years, there has been an increasing development of new computational as well as experimental techniques, such as non-uniform rational basis splines (NURBS) and 3D X-ray Computed Tomography (3DXRCT), which are contributing to create new tools that enable the inclusion of complex grain morphologies into DEM schemes.

Yet, as the scientific community is still developing these new tools, there is still a gap in thoroughly understanding the physical relations connecting grain and continuum scales as well as in the development of discrete techniques that can predict the emergent behavior of granular materials without resorting to phenomenology, but rather can directly unravel the micro-mechanical origin of macroscopic behavior.

In order to contribute towards closing the aforementioned gap, we have developed a micro-mechanical analysis of macroscopic peak strength, critical state, and residual strength in two-dimensional non-cohesive granular media, where typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain-scale counterparts (e.g., inter-particle contact forces, fabric, particle displacements, and velocities), providing an across-the-scale basis for better understanding and modeling granular media.

In the same way, we utilize a new DEM scheme (LS-DEM) that takes advantage of a mathematical technique called level set (LS) to enable the inclusion of real grain shapes into a classical discrete element method. After calibrating LS-DEM with respect to real experimental results, we exploit part of its potential to study the dependency of critical state (CS) parameters such as the critical state line (CSL) slope, CSL intercept, and CS friction angle on the grain's morphology, i.e., sphericity, roundness, and regularity.

Finally, we introduce a first computational algorithm to ``clone'' the grain morphologies of a sample of real digital grains. This cloning algorithm allows us to generate an arbitrary number of cloned grains that satisfy the same morphological features (e.g., roundness and aspect ratio) displayed by their real parents and can be included into a DEM simulation of a given mechanical phenomenon. In turn, this will help with the development of discrete techniques that can directly predict the engineering scale behavior of granular media without resorting to phenomenology.