6 resultados para Quick-XAS

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We aim to characterize fault slip behavior during all stages of the seismic cycle in subduction megathrust environments with the eventual goal of understanding temporal and spatial variations of fault zone rheology, and to infer possible causal relationships between inter-, co- and post-seismic slip, as well as implications for earthquake and tsunami hazard. In particular we focus on analyzing aseismic deformation occurring during inter-seismic and post-seismic periods of the seismic cycle. We approach the problem using both Bayesian and optimization techniques. The Bayesian approach allows us to completely characterize the model parameter space by searching a posteriori estimates of the range of allowable models, to easily implement any kind of physically plausible a priori information and to perform the inversion without regularization other than that imposed by the parameterization of the model. However, the Bayesian approach computational expensive and not currently viable for quick response scenarios. Therefore, we also pursue improvements in the optimization inference scheme. We present a novel, robust and yet simple regularization technique that allows us to infer robust and somewhat more detailed models of slip on faults. We apply such methodologies, using simple quasi-static elastic models, to perform studies of inter- seismic deformation in the Central Andes subduction zone, and post-seismic deformation induced by the occurrence of the 2011 Mw 9.0 Tohoku-Oki earthquake in Japan. For the Central Andes, we present estimates of apparent coupling probability of the subduction interface and analyze its relationship to past earthquakes in the region. For Japan, we infer high spatial variability in material properties of the megathrust offshore Tohoku. We discuss the potential for a large earthquake just south of the Tohoku-Oki earthquake where our inferences suggest dominantly aseismic behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic properties of a structure are a function of its physical properties, and changes in the physical properties of the structure, including the introduction of structural damage, can cause changes in its dynamic behavior. Structural health monitoring (SHM) and damage detection methods provide a means to assess the structural integrity and safety of a civil structure using measurements of its dynamic properties. In particular, these techniques enable a quick damage assessment following a seismic event. In this thesis, the application of high-frequency seismograms to damage detection in civil structures is investigated.

Two novel methods for SHM are developed and validated using small-scale experimental testing, existing structures in situ, and numerical testing. The first method is developed for pre-Northridge steel-moment-resisting frame buildings that are susceptible to weld fracture at beam-column connections. The method is based on using the response of a structure to a nondestructive force (i.e., a hammer blow) to approximate the response of the structure to a damage event (i.e., weld fracture). The method is applied to a small-scale experimental frame, where the impulse response functions of the frame are generated during an impact hammer test. The method is also applied to a numerical model of a steel frame, in which weld fracture is modeled as the tensile opening of a Mode I crack. Impulse response functions are experimentally obtained for a steel moment-resisting frame building in situ. Results indicate that while acceleration and velocity records generated by a damage event are best approximated by the acceleration and velocity records generated by a colocated hammer blow, the method may not be robust to noise. The method seems to be better suited for damage localization, where information such as arrival times and peak accelerations can also provide indication of the damage location. This is of significance for sparsely-instrumented civil structures.

The second SHM method is designed to extract features from high-frequency acceleration records that may indicate the presence of damage. As short-duration high-frequency signals (i.e., pulses) can be indicative of damage, this method relies on the identification and classification of pulses in the acceleration records. It is recommended that, in practice, the method be combined with a vibration-based method that can be used to estimate the loss of stiffness. Briefly, pulses observed in the acceleration time series when the structure is known to be in an undamaged state are compared with pulses observed when the structure is in a potentially damaged state. By comparing the pulse signatures from these two situations, changes in the high-frequency dynamic behavior of the structure can be identified, and damage signals can be extracted and subjected to further analysis. The method is successfully applied to a small-scale experimental shear beam that is dynamically excited at its base using a shake table and damaged by loosening a screw to create a moving part. Although the damage is aperiodic and nonlinear in nature, the damage signals are accurately identified, and the location of damage is determined using the amplitudes and arrival times of the damage signal. The method is also successfully applied to detect the occurrence of damage in a test bed data set provided by the Los Alamos National Laboratory, in which nonlinear damage is introduced into a small-scale steel frame by installing a bumper mechanism that inhibits the amount of motion between two floors. The method is successfully applied and is robust despite a low sampling rate, though false negatives (undetected damage signals) begin to occur at high levels of damage when the frequency of damage events increases. The method is also applied to acceleration data recorded on a damaged cable-stayed bridge in China, provided by the Center of Structural Monitoring and Control at the Harbin Institute of Technology. Acceleration records recorded after the date of damage show a clear increase in high-frequency short-duration pulses compared to those previously recorded. One undamage pulse and two damage pulses are identified from the data. The occurrence of the detected damage pulses is consistent with a progression of damage and matches the known chronology of damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For some time now, the Latino voice has been gradually gaining strength in American politics, particularly in such states as California, Florida, Illinois, New York, and Texas, where large numbers of Latino immigrants have settled and large numbers of electoral votes are at stake. Yet the issues public officials in these states espouse and the laws they enact often do not coincide with the interests and preferences of Latinos. The fact that Latinos in California and elsewhere have not been able to influence the political agenda in a way that is commensurate with their numbers may reflect their failure to participate fully in the political process by first registering to vote and then consistently turning out on election day to cast their ballots.

To understand Latino voting behavior, I first examine Latino political participation in California during the ten general elections of the 1980s and 1990s, seeking to understand what percentage of the eligible Latino population registers to vote, with what political party they register, how many registered Latinos to go the polls on election day, and what factors might increase their participation in politics. To ensure that my findings are not unique to California, I also consider Latino voter registration and turnout in Texas for the five general elections of the 1990s and compare these results with my California findings.

I offer a new approach to studying Latino political participation in which I rely on county-level aggregate data, rather than on individual survey data, and employ the ecological inference method of generalized bounds. I calculate and compare Latino and white voting-age populations, registration rates, turnout rates, and party affiliation rates for California's fifty-eight counties. Then, in a secondary grouped logit analysis, I consider the factors that influence these Latino and white registration, turnout, and party affiliation rates.

I find that California Latinos register and turn out at substantially lower rates than do whites and that these rates are more volatile than those of whites. I find that Latino registration is motivated predominantly by age and education, with older and more educated Latinos being more likely to register. Motor voter legislation, which was passed to ease and simplify the registration process, has not encouraged Latino registration . I find that turnout among California's Latino voters is influenced primarily by issues, income, educational attainment, and the size of the Spanish-speaking communities in which they reside. Although language skills may be an obstacle to political participation for an individual, the number of Spanish-speaking households in a community does not encourage or discourage registration but may encourage turnout, suggesting that cultural and linguistic assimilation may not be the entire answer.

With regard to party identification, I find that Democrats can expect a steady Latino political identification rate between 50 and 60 percent, while Republicans attract 20 to 30 percent of Latino registrants. I find that education and income are the dominant factors in determining Latino political party identification, which appears to be no more volatile than that of the larger electorate.

Next, when I consider registration and turnout in Texas, I find that Latino registration rates are nearly equal to those of whites but that Texas Latino turnout rates are volatile and substantially lower than those of whites.

Low turnout rates among Latinos and the volatility of these rates may explain why Latinos in California and Texas have had little influence on the political agenda even though their numbers are large and increasing. Simply put, the voices of Latinos are little heard in the halls of government because they do not turn out consistently to cast their votes on election day.

While these findings suggest that there may not be any short-term or quick fixes to Latino participation, they also suggest that Latinos should be encouraged to participate more fully in the political process and that additional education may be one means of achieving this goal. Candidates should speak more directly to the issues that concern Latinos. Political parties should view Latinos as crossover voters rather than as potential converts. In other words, if Latinos were "a sleeping giant," they may now be a still-drowsy leviathan waiting to be wooed by either party's persuasive political messages and relevant issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the five chapters that follow, I delineate my efforts over the last five years to synthesize structurally and chemically relevant models of the Oxygen Evolving Complex (OEC) of Photosystem II. The OEC is nature’s only water oxidation catalyst, in that it forms the dioxygen in our atmosphere necessary for oxygenic life. Therefore understanding its structure and function is of deep fundamental interest and could provide design elements for artificial photosynthesis and manmade water oxidation catalysts. Synthetic endeavors towards OEC mimics have been an active area of research since the mid 1970s and have mutually evolved alongside biochemical and spectroscopic studies, affording ever-refined proposals for the structure of the OEC and the mechanism of water oxidation. This research has culminated in the most recent proposal: a low symmetry Mn4CaO5 cluster with a distorted Mn3CaO4 cubane bridged to a fourth, dangling Mn. To give context for how my graduate work fits into this rich history of OEC research, Chapter 1 provides a historical timeline of proposals for OEC structure, emphasizing the role that synthetic Mn and MnCa clusters have played, and ending with our Mn3CaO4 heterometallic cubane complexes.

In Chapter 2, the triarylbenzene ligand framework used throughout my work is introduced, and trinuclear clusters of Mn, Co, and Ni are discussed. The ligand scaffold consistently coordinates three metals in close proximity while leaving coordination sites open for further modification through ancillary ligand binding. The ligands coordinated could be varied, with a range of carboxylates and some less coordinating anions studied. These complexes’ structures, magnetic behavior, and redox properties are discussed.

Chapter 3 explores the redox chemistry of the trimanganese system more thoroughly in the presence of a fourth Mn equivalent, finding a range of oxidation states and oxide incorporation dependent on oxidant, solvent, and Mn salt. Oxidation states from MnII4 to MnIIIMnIV3 were observed, with 1-4 O2– ligands incorporated, modeling the photoactivation of the OEC. These complexes were studied by X-ray diffraction, EPR, XAS, magnetometry, and CV.

As Ca2+ is a necessary component of the OEC, Chapter 4 discusses synthetic strategies for making highly structurally accurate models of the OEC containing both Mn and Ca in the Mn3CaO4 cubane + dangling Mn geometry. Structural and electrochemical characterization of the first Mn3CaO4 heterometallic cubane complex— and comparison to an all-Mn Mn4O4 analog—suggests a role for Ca2+ in the OEC. Modification of the Mn3CaO4 system by ligand substitution affords low symmetry Mn3CaO4 complexes that are the most accurate models of the OEC to date.

Finally, in Chapter 5 the reactivity of the Mn3CaO4 cubane complexes toward O- atom transfer is discussed. The metal M strongly affects the reactivity. The mechanisms of O-atom transfer and water incorporation from and into Mn4O4 and Mn4O3 clusters, respectively, are studied through computation and 18O-labeling studies. The μ3-oxos of the Mn4O4 system prove fluxional, lending support for proposals of O2– fluxionality within the OEC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA charge transport (CT) involves the efficient transfer of electrons or electron holes through the DNA π-stack over long molecular distances of at least 100 base-pairs. Despite this shallow distance dependence, DNA CT is sensitive to mismatches or lesions that disrupt π-stacking and is critically dependent on proper electronic coupling of the donor and acceptor moieties into the base stack. Favorable DNA CT is very rapid, occurring on the picosecond timescale. Because of this speed, electron holes equilibrate along the DNA π-stack, forming a characteristic pattern of DNA damage at low oxidation potential guanine multiplets. Furthermore, DNA CT may be used in a biological context. DNA processing enzymes with 4Fe4S clusters can perform DNA-mediated electron transfer (ET) self-exchange reactions with other 4Fe4S cluster proteins, even if the proteins are quite dissimilar, as long as the DNA-bound [4Fe4S]3+/2+ redox potentials are conserved. This mechanism would allow low copy number DNA repair proteins to find their lesions efficiently within the cell. DNA CT may also be used biologically for the long-range, selective activation of redox-active transcription factors. Within this work, we pursue other proteins that may utilize DNA CT within the cell and further elucidate aspects of the DNA-mediated ET self-exchange reaction of 4Fe4S cluster proteins.

Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. One aspect of their protection involves ferroxidase activity, whereby ferrous iron is bound and oxidized selectively by hydrogen peroxide, thereby preventing formation of damaging hydroxyl radicals via Fenton chemistry. Understanding the specific mechanism by which Dps proteins protect the bacterial genome could inform the development of new antibiotics. We investigate whether DNA-binding E. coli Dps can utilize DNA CT to protect the genome from a distance. An intercalating ruthenium photooxidant was employed to generate oxidative DNA damage via the flash-quench technique, which localizes to a low potential guanine triplet. We find that Dps loaded with ferrous iron, in contrast to Apo-Dps and ferric iron-loaded Dps which lack available reducing equivalents, significantly attenuates the yield of oxidative DNA damage at the guanine triplet. These data demonstrate that ferrous iron-loaded Dps is selectively oxidized to fill guanine radical holes, thereby restoring the integrity of the DNA. Luminescence studies indicate no direct interaction between the ruthenium photooxidant and Dps, supporting the DNA-mediated oxidation of ferrous iron-loaded Dps. Thus DNA CT may be a mechanism by which Dps efficiently protects the genome of pathogenic bacteria from a distance.

Further work focused on spectroscopic characterization of the DNA-mediated oxidation of ferrous iron-loaded Dps. X-band EPR was used to monitor the oxidation of DNA-bound Dps after DNA photooxidation via the flash-quench technique. Upon irradiation with poly(dGdC)2, a signal arises with g = 4.3, consistent with the formation of mononuclear high-spin Fe(III) sites of low symmetry, the expected oxidation product of Dps with one iron bound at each ferroxidase site. When poly(dGdC)2 is substituted with poly(dAdT)2, the yield of Dps oxidation is decreased significantly, indicating that guanine radicals facilitate Dps oxidation. The more favorable oxidation of Dps by guanine radicals supports the feasibility of a long-distance protection mechanism via DNA CT where Dps is oxidized to fill guanine radical holes in the bacterial genome produced by reactive oxygen species.

We have also explored possible electron transfer intermediates in the DNA-mediated oxidation of ferrous iron-loaded Dps. Dps proteins contain a conserved tryptophan residue in close proximity to the ferroxidase site (W52 in E. coli Dps). In comparison to WT Dps, in EPR studies of the oxidation of ferrous iron-loaded Dps following DNA photooxidation, W52Y and W52A mutants were deficient in forming the characteristic EPR signal at g = 4.3, with a larger deficiency for W52A compared to W52Y. In addition to EPR, we also probed the role of W52 Dps in cells using a hydrogen peroxide survival assay. Bacteria containing W52Y Dps survived the hydrogen peroxide challenge more similarly to those containing WT Dps, whereas cells with W52A Dps died off as quickly as cells without Dps. Overall, these results suggest the possibility of W52 as a CT hopping intermediate.

DNA-modified electrodes have become an essential tool for the study of the redox chemistry of DNA processing enzymes with 4Fe4S clusters. In many cases, it is necessary to investigate different complex samples and substrates in parallel in order to elucidate this chemistry. Therefore, we optimized and characterized a multiplexed electrochemical platform with the 4Fe4S cluster base excision repair glycosylase Endonuclease III (EndoIII). Closely packed DNA films, where the protein has limited surface accessibility, produce EndoIII electrochemical signals sensitive to an intervening mismatch, indicating a DNA-mediated process. Multiplexed analysis allowed more robust characterization of the CT-deficient Y82A EndoIII mutant, as well as comparison of a new family of mutations altering the electrostatics surrounding the 4Fe4S cluster in an effort to shift the reduction potential of the cluster. While little change in the DNA-bound midpoint potential was found for this family of mutants, likely indicating the dominant effect of DNA-binding on establishing the protein redox potential, significant variations in the efficiency of DNA-mediated electron transfer were apparent. On the basis of the stability of these proteins, examined by circular dichroism, we proposed that the electron transfer pathway in EndoIII can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster.

While the 4Fe4S cluster of EndoIII is relatively insensitive to oxidation and reduction in solution, we have found that upon DNA binding, the reduction potential of the [4Fe4S]3+/2+ couple shifts negatively by approximately 200 mV, bringing this couple into a physiologically relevant range. Demonstrated using electrochemistry experiments in the presence and absence of DNA, these studies do not provide direct molecular evidence for the species being observed. Sulfur K-edge X-ray absorbance spectroscopy (XAS) can be used to probe directly the covalency of iron-sulfur clusters, which is correlated to their reduction potential. We have shown that the Fe-S covalency of the 4Fe4S cluster of EndoIII increases upon DNA binding, stabilizing the oxidized [4Fe4S]3+ cluster, consistent with a negative shift in reduction potential. The 7% increase in Fe-S covalency corresponds to an approximately 150 mV shift, remarkably similar to DNA electrochemistry results. Therefore we have obtained direct molecular evidence for the shift in 4Fe4S reduction potential of EndoIII upon DNA binding, supporting the feasibility of our model whereby these proteins can utilize DNA CT to cooperate in order to efficiently find DNA lesions inside cells.

In conclusion, in this work we have explored the biological applications of DNA CT. We discovered that the DNA-binding bacterial ferritin Dps can protect the bacterial genome from a distance via DNA CT, perhaps contributing to pathogen survival and virulence. Furthermore, we optimized a multiplexed electrochemical platform for the study of the redox chemistry of DNA-bound 4Fe4S cluster proteins. Finally, we have used sulfur K-edge XAS to obtain direct molecular evidence for the negative shift in 4Fe4S cluster reduction potential of EndoIII upon DNA binding. These studies contribute to the understanding of DNA-mediated protein oxidation within cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer chemotherapy has advanced from highly toxic drugs to more targeted treatments in the last 70 years. Chapter 1 opens with an introduction to targeted therapy for cancer. The benefits of using a nanoparticle to deliver therapeutics are discussed. We move on to siRNA in particular, and why it would be advantageous as a therapy. Specific to siRNA delivery are some challenges, such as nuclease degradation, quick clearance from circulation, needing to enter cells, and getting to the cytosol. We propose the development of a nanoparticle delivery system to tackle these challenges so that siRNA can be effective.

Chapter 2 of this thesis discusses the synthesis and analysis of a cationic mucic acid polymer (cMAP) which condenses siRNA to form a nanoparticle. Various methods to add polyethylene glycol (PEG) for stabilizing the nanoparticle in physiologic solutions, including using a boronic acid binding to diols on mucic acid, forming a copolymer of cMAP with PEG, and creating a triblock with mPEG on both ends of cMAP. The goal of these various pegylation strategies was to increase the circulation time of the siRNA nanoparticle in the bloodstream to allow more of the nanoparticle to reach tumor tissue by the enhanced permeation and retention effect. We found that the triblock mPEG-cMAP-PEGm polymer condensed siRNA to form very stable 30-40 nm particles that circulated for the longest time – almost 10% of the formulation remained in the bloodstream of mice 1 h after intravenous injection.

Chapter 3 explores the use of an antibody as a targeting agent for nanoparticles. Some antibodies of the IgG1 subtype are able to recruit natural killer cells that effect antibody dependent cellular cytotoxicity (ADCC) to kill the targeted cell to which the antibody is bound. There is evidence that the ADCC effect remains in antibody-drug conjugates, so we wanted to know whether the ADCC effect is preserved when the antibody is bound to a nanoparticle, which is a much larger and complex entity. We utilized antibodies against epidermal growth factor receptor with similar binding and pharmacokinetics, cetuximab and panitumumab, which differ in that cetuximab is an IgG1 and panitumumab is an IgG2 (which does not cause ADCC). Although a natural killer cell culture model showed that gold nanoparticles with a full antibody targeting agent can elicit target cell lysis, we found that this effect was not preserved in vivo. Whether this is due to the antibody not being accessible to immune cells or whether the natural killer cells are inactivated in a tumor xenograft remains unknown. It is possible that using a full antibody still has value if there are immune functions which are altered in a complex in vivo environment that are intact in an in vitro system, so the value of using a full antibody as a targeting agent versus using an antibody fragment or a protein such as transferrin is still open to further exploration.

In chapter 4, nanoparticle targeting and endosomal escape are further discussed with respect to the cMAP nanoparticle system. A diboronic acid entity, which gives an order of magnitude greater binding (than boronic acid) to cMAP due to the vicinal diols in mucic acid, was synthesized, attached to 5kD or 10kD PEG, and conjugated to either transferrin or cetuximab. A histidine was incorporated into the triblock polymer between cMAP and the PEG blocks to allow for siRNA endosomal escape. Nanoparticle size remained 30-40 nm with a slightly negative ca. -3 mV zeta potential with the triblock polymer containing histidine and when targeting agents were added. Greater mRNA knockdown was seen with the endosomal escape mechanism than without. The nanoparticle formulations were able to knock down the targeted mRNA in vitro. Mixed effects suggesting function were seen in vivo.

Chapter 5 summarizes the project and provides an outlook on siRNA delivery as well as targeted combination therapies for the future of personalized medicine in cancer treatment.